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Abstract

In this paper, we provide new evidence on the determinants of EU emission

allowance prices by analyzing the most recent time period, i.e. phases III

and IV. We consider energy (oil, natural gas, coal) and electricity prices as

well as profit spreads of marginal power generation (clean dark spread, clean

spark spread) using various modeling approaches. We find that none of the

approaches that have been proposed in the early literature on carbon pricing

is suitable to explain the allowance price in more recent samples. Among the

variables, crude oil appears to be the most important market fundamental, as

it explains the largest share of variance on its own. However, the explanatory

power of all variables diminishes compared to what has been documented

before. Previous literature shows that the market fundamentals are able to

explain about 30% of the variation of EU emission allowances in phase I, while

we show that the explanatory power drops to below 5% in the more recent

trading phases III and IV. We conjecture that as more and more industries fall

under the regulation, the economic mechanics have fundamentally changed.
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1 Introduction

Global climate change is one of the most important problems of modern society. It

is an obstacle to economic development and human health. One widely accepted

way of tackling climate change is to reduce greenhouse gas (GHG) emissions. On

the basis of the targets of the Kyoto Protocol from 1997, the EU Emissions Trading

Scheme (EU ETS) was developed and came into force in 2005. It was the first

emission trading system and continues to be the largest in existence today.

The EU ETS is based on a cap-and-trade idea. Within this concept, upper

limits (caps) are set for the total amount of GHGs that may be emitted by certain

sectors of the economy in a given period. Within these caps, companies receive

or purchase emission allowances (EUAs) that entitle them to emit one tonne of

CO2-equivalent per allowance. Once a year, the installations must report their

emissions and surrender sufficient allowances to cover them.1 If a company is unable

to submit enough allowances, it must pay a penalty.2 The cap is lowered each year

to reduce the total amount of emissions and induce a scarcity, which will ensure that

the allowances have a positive value and the emissions are cut back.

The price of the permits is determined by the market as they can be traded

freely, including also futures and options markets. This creates the necessity

to understand the pricing mechanism. Christiansen et al. (2005) suggest three

factors that are likely to influence the allowance price. These are policy and

regulatory issues; market fundamentals, including weather and production levels;

and non-fundamentals, such as technical indicators. The influence of market

fundamentals on the allowance price in the first two phases of the EU ETS has

been extensively researched (Mansanet-Bataller et al., 2007; Alberola et al., 2008a;

Alberola et al., 2008b; Hintermann, 2010; Aatola et al., 2013; Lutz et al., 2013; and

1Data for a given year must be verified by an accredited verifier by 31 March of the following
year. After the verification, an equivalent number of emission allowances must be surrendered by
30 April of that year.

2The penalty amounts to e100 per uncovered tonne of emissions, which increases annually since
2012 in line with the European consumer price index. The penalty has to be paid additional to
the cost of submitting allowances due in the next compliance period, which reduces the available
permits in the next period. Further, the name of the penalized company is published.
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others). But some argue that the relationship between the allowance price and its

price determinants changes over time (Aatola et al., 2013; Koop and Tole, 2013;

Lutz et al., 2013; Koch et al., 2014; Batten et al., 2021).

In this paper, we test this hypothesis. We contribute to the literature by

being the first to analyze the price drivers of emission allowances during phase

III and the first part of phase IV. We consider linear regressions (Alberola et al.,

2008a) and augment it with higher-order polynomials (Hintermann, 2010), structural

vector autoregressive (SVAR) models (Hammoudeh et al., 2014), and a cointegration

analysis (Creti et al., 2012). Further, we focus on abatement-related fundamentals

that have been documented as price drivers in the literature, which are crude oil,

natural gas, coal, and electricity prices, as well as the clean dark spread and the

clean spark spread. We find that crude oil is the most important price determinant

among the abatement-related variables. Although it explains the largest share of

variation, this share is extremely small, especially compared to previous results

from phase I and II, and the significance of oil is not robust to other modeling

approaches. Considering higher polynomials of the determinants improves the

overall performance slightly, which hints at allowance prices exhibiting non-linear

relationships with fundamentals. Nevertheless, the explanatory power is still low.

Through the estimated SVARs, we find some significant impulse-responses of the

allowance price, but these are small in magnitude. We find evidence of a long-term

equilibrium in phase III of the EU ETS based on a cointegration analysis, but

the corresponding vector error correction model (VECM) explains very little of

the allowance price variation. Overall, we conclude that the abatement-related

fundamentals alone are not sufficient for explaining emission allowance prices in

phases III and IV. The results give rise to the assumption that the allowance return

can be better explained using proxies for economic activity.

The remainder of this study is organized as follows. Section 2 explains the

mechanics of the EU ETS, while Section 3 gives an overview of the related literature.

Section 4 discusses the data and methods. Section 5 shows the empirical results,

and Section 6 concludes.
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2 EU Emission Trading Scheme

The EU ETS operates in phases. The first phase was a learning-by-doing phase. In

this period, almost all allowances were allocated free of charge and the caps were set

at the national level in national allocation plans, which were added up to the overall

cap. The amount of available permits exceeded actual emissions in the first phase,

which led to a sharp drop in allowance prices in April 2006, when the first verified

emissions were disclosed and the surplus became apparent. Phase I is isolated as

banking of allowances was prohibited, which caused the price to fall to zero at the

end of the phase. The spot price development can be seen in Figure 1.

The second phase was the first commitment period to the Kyoto Protocol. From

this phase onward it has been allowed to bank permits from one trading phase into

the next. The national caps were lowered because they are now based on verified

emissions. Several countries began conducting auctions to distribute allowances,

reducing the share of free allocations to 90%. New countries joined the scheme

and aviation was included at the beginning of 2012, although only flights within

the European Economic Area were considered until the end of 2023. The economic

crisis in 2008 had a strong impact on the allowance price throughout phase II, as it

led to an unexpected sharp drop in emissions and thus producing a large surplus of

allowances.

Phase III introduced an EU-wide cap instead of national ones. Auctioning

became the standard method for allocating allowances and new gases and industry

were included. Thus, the emissions prior to phase III are not comparable to the

ones in the latest two trading periods. It can also be argued that, due to the fact

that almost all installations now have to buy the allowances required, their prices

are not comparable. Thus a change in the pricing process can be expected, which

is underlined through the increased open interest in EUA futures after 2013. In

2019, the Market Stability Reserve (MSR) was introduced to address the surplus of

allowances in the market, which resulted in higher and more stable carbon prices.

Phase IV began in 2021, and will run until 2030. Free allocation has been
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extended for another decade for the sectors with the highest risk of carbon leakage.

The reduction target was increased through a preliminary political agreement on

an emissions trading reform from December 2022, “Fit for 55”. The new target

is to reduce GHG emissions by at least 55% by 2030 compared to 2005 emission

levels. Furthermore, maritime transport is also to be included in the ETS through

an annual phase-in between 2024 and 2026. Additionally, a new, separate ETS is to

be created for buildings, road transport, and fuels.

3 Related literature

EU emission allowance prices are determined by a standard supply and demand

balance. The supply side is fixed as it is the EU wide cap set out by the EU ETS

Directive. The demand side is a function of expected GHG emissions. The level

of GHG emissions is determined by various factors such as energy demand, energy

prices (e.g. coal, gas, oil), weather conditions (e.g. temperature fluctuations) or

economic activity. The demand can also be influenced by speculation, as around

35% of long positions in EUA on the European Energy Exchange (EEX) are

held by institutions that are not obliged to surrender allowances under the EU

ETS. Mansanet-Bataller and Pardo (2008) and Afonin et al. (2018) analyze EUAs

as stand-alone investments or their potential benefit when included in portfolios.

Further, considerable effort has been made to analyze the price dynamics of emission

allowances (Benz and Trück, 2009; Daskalakis et al., 2009; Isenegger and von Wyss,

2009; Carmona and Hinz, 2011; Hitzemann and Uhrig-Homburg, 2018).

Previous literature (Mansanet-Bataller et al., 2007; Alberola et al., 2008a;

Hintermann, 2010; Bredin and Muckley, 2011; Creti et al., 2012; Batten et al.,

2021) has shown the importance of energy prices in explaining carbon prices.

Alberola et al. (2008a) highlight the influence of energy prices (natural gas, oil, coal,

electricity) and temperature variation on carbon prices in the first trading phase and

thereby identify the effect of the disclosure of the first verified emissions. The results

are further investigated in later trading periods by Aatola et al. (2013), Lutz et al.
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(2013), Koch et al. (2014), and Batten et al. (2021), showing a gradual decrease

in the explanatory power of energy prices, a loss of significance for the weather

variables, and rather sharp changes in the significant factors, their magnitude and

sign. Alberola et al. (2008b) and Chevallier (2011) highlight the importance of

economic activity, either sector specific or overall European economic activity, for

the permit price. We summarize existing research in Table 1.

The majority of the studies focus on the first two trading phases, and their

results have to be considered with caution when transferring to more recent trading

periods. This is on the one hand the case due to the extreme price drop in phase

I highlighted by Alberola et al. (2008a), but also due to the fact that there was

a large surplus of allowances which peaked in 2013 (European Commission and

Directorate-General for Climate Action, 2021). Moreover, the dynamics investigated

with the transition from phase I and II are not applicable to later phase shifts, as

the banking prohibition was removed. Other major changes, such as the inclusion

of more sectors and gases, took place in phase III. It therefore is necessary to take

up prior approaches and test the validity of their results in more recent periods with

newer market regulations.

4 Data & Methods

4.1 Data

We employ daily data that covers the period from January 1, 2013, to March 31,

2023, thus encompassing phases III and part of phase IV of the EU ETS. The data

is obtained from Refinitiv Eikon’s financial database and Datastream. We use EUA

daily closing spot prices (e) from the EEX for our main analysis. For robustness,

we also use the EUA daily closing futures prices of a futures chain (e) from the

Intercontinental Exchange (ICE).

The market determinants considered are crude oil, coal, natural gas, and
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electricity prices, as well as the clean spark spread and the clean dark spread.3

Oil prices are ICE Brent crude oil futures ($/barrel) and the corresponding index

($/barrel). Natural gas prices are ICE UK NBP Natural Gas monthly futures (UK

pence/therm) and the London Natural Gas Index (UK pence/therm). Coal prices

are ICE Rotterdam Coal monthly futures ($/ton). All price series are converted to

Euros. Since there is no single electricity price series that represents all electricity

prices in the EU, we follow Aatola et al. (2013) and use the German baseload

electricity price index (e/MWh) from Marex Spectron, as Germany is the largest

country in the EU and produces the highest share of electricity.4

The clean dark spread (e/MWh) is the difference between the peak electricity

price and the price of coal used to generate the electricity, adjusted for the cost

of emission allowances. It therefore represents the marginal profit that a coal-fired

power plant can make from the sale of an additional unit of electricity, adjusted

for fuel purchase costs and the carbon price. The clean spark spread (e/MWh) is

the equivalent for natural gas-fired plants and is defined as the difference between

the peak hour electricity price and the natural gas price, adjusted for input and

allowance costs (Alberola et al., 2008a).

We test each time series using the ADF (Said and Dickey, 1984), PP (Phillips

and Perron, 1988), and KPSS (Kwiatkowski et al., 1992) test, showing that all time

series are integrated of order 1. Therefore, we transform each time series to its

natural logarithm and take first differences, except for the spreads which will only

be differenced due to the possibility of a non-positive spread. For the cointegration

analysis in Section 5.2.2, the variables stay in log-levels. Descriptive statistics of the

transformed variables are given in Table 2, while Table 3 displays the correlations.

3We omit weather variables that were included by Alberola et al. (2008a), as more recent studies
have shown that only extreme weather events had an impact and that these have lost their relevance
for the allowance price over time (Lutz et al., 2013; Batten et al., 2021).

4Days with negative electricity prices are excluded from the analysis.
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4.2 Methodology

4.2.1 Contemporaneous regression

First, we estimate contemporaneous regressions as in Alberola et al. (2008a) and

Batten et al. (2021). We include oil, coal, natural gas, and electricity prices as well

as the clean dark spread, and the clean spark spread as explanatory variables. The

model for the return of carbon (EUAt) is:

EUAt = α + β1 EUAt−1 + β2 brentt + β3 coalt + β4 ngast

+ β5 elect + β6 clean darkt + β7 clean sparkt + ϵt, (1)

where t indicates the calendar day. EUAt−1 is the EUA return lagged by one day,

brentt is the brent crude oil return, coalt is the coal return, ngast corresponds to the

natural gas return, elect is the electricity return, clean darkt is the clean dark spread

change, clean sparkt is the clean spark spread change, and ϵt is the error term. All

variables are contemporaneous, except for the lagged EUA return. The regression is

estimated using an OLS estimator with a Newey–West covariance matrix to make

the standard errors robust to autocorrelation in the residuals and heteroskedasticity.

4.2.2 Structural vector autoregressive model

Due to endogeneity problems of electricity, clean dark spread, and clean spark spread

with the EUA price, the coefficients of the contemporaneous regression may be

biased. To address this fact, Aatola et al. (2013) suggest using a reduced-form

VAR. However, the contemporaneous relationships between the variables may

be important. To take this into account, we estimate a structural VAR as in

Hammoudeh et al. (2014). A decision must be made on the identifying restrictions,

i.e. as to which current value should influence another current value, but not vice

versa. To determine these restrictions, we follow Hammoudeh et al. (2014) and
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assume the following chain of causality:

elect → coalt → ngast →

brentt → clean darkt → clean sparkt → EUAt. (2)

We assume that the electricity price influences the other prices, but not vice versa, as

per assumption the energy demand has a greater impact on the pricing mechanism

of the other variables. The coal price is assumed to be influenced by the electricity

price, whereas it also has an impact on the gas and oil prices, as it remains the

primary fuel in energy production. Crude oil is not that often used for energy

generation, hence it is assumed to be influenced not only by electricity and coal

prices but also by natural gas prices. The spreads are determined by the factors prior

in our chain of causality, and therefore should be influenced contemporaneously by

all of these factors. The clean dark spread is before the clean spark spread, as the

share of energy generated using coal is larger. We do not place any restrictions on

the carbon price, since we assume that it can be contemporaneously influenced by

all the other variables. Consequently, the allowance price is ordered last. The lag

length p is determined using the Akaike (1974) information criterion (AIC).

4.2.3 Cointegration

So far only short-term relationships are considered, but there is also the possibility

of long-term equilibrium relationships. Bredin and Muckley (2011) and Creti

et al. (2012) consider long-term equilibria using cointegration methods. Thus, we

consider a standard VECM and use the Johansen (1988) method to determine the

cointegration relationship. For this analysis, the variables are expressed in log-levels,

except the spreads. We determine the optimal lag length using the AIC and test

for bivariate cointegration of the individual variables with the price of allowances to

avoid spurious cointegration results, considering that energy prices are cointegrated

with each other but not necessarily with the price of allowances.
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5 Empirical results

5.1 Univariate Analysis

5.1.1 Full phases

Panel (a) of Table 4 shows the results of Regression (1) for phase III, while Panel

(b) shows the results for phase IV. It becomes apparent that the discussed factors

together are only able to explain 4.7% of the variation of the allowance spot return in

phase III and 0.6% in phase IV, whereas they explained 34.17% in phase I (Alberola

et al., 2008a) and 6.6% in the time span from 2013 to 2017 (Batten et al., 2021).

Thus, taking the entire phase III, the explanatory power of energy prices is further

reduced, while their power diminishes in the analyzed time frame of phase IV, where

none of the determinants exhibits a significant coefficient. The following analysis

therefore focuses on the results of the third trading phase.

Oil is the factor that explains the largest share of variation alone and has a

rather high and positive coefficient. It was also a significant factor in phase I and

II with varying coefficient sizes. Alberola et al. (2008a) find small coefficients in

their sub-periods while Creti et al. (2012) show higher coefficients in the entire time

span of phase I and also in phase II. Lutz et al. (2013) again find smaller coefficients

in phase II, while Koch et al. (2014) are not able to identify a significant effect

of oil in that trading period. Thus, there is a large variation in the documented

effect of oil on the allowance return. The only consistency is that the coefficient of

oil is positive, suggesting that oil influences the return on allowances not through

its carbon intensity as an energy source, but rather as an indicator of aggregate

economic activity.

In our analysis the coefficient of coal is significant and positive. In the first

trading period of the system, coal was found to be insignificant on the one hand

(Mansanet-Bataller et al., 2007; Hintermann, 2010) and on the other hand it is

found to be significant with either a negative (Alberola et al., 2008a) or a positive

coefficient (Chevallier, 2011; Aatola et al., 2013). In phase II the same variety as

in phase I can be found, covering an insignificant (Koch et al., 2014), a significant
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positive (Chevallier, 2011; Lutz et al., 2013), and significant negative coefficient

(Aatola et al., 2013). For the period from 2013 to 2017, Batten et al. (2021) find

that coal is a significant factor with a negative coefficient. Thus, coal is the factor

with largest variety of effects on the allowance returns. This could be due to two

potentially opposing effects that determine the relationship between coal and the

return on allowances. The first is the widely held view that economic activity drives

commodity demand and prices. Lutz et al. (2013) argue that a change in aggregate

demand may affect commodity and allowance prices in the same way, leading to a

positive relationship for returns as well. The second effect is the substitution effect,

where installations can switch from coal to another input factor. This effect implies

that a company would switch from coal to one of its substitutes when the price

of coal is increasing. In the case of oil and natural gas as substitutes this would

cause fewer emissions, which in turn results in a negative relation between coal and

EUA returns. Our results suggest that the economic activity effect outweighs the

substitution effect.

Natural gas is a significant factor with a positive coefficient, but explains less

than 1% of the allowance return. It was also a significant factor with nearly the

same size for the coefficient in phase I and II (Alberola et al., 2008a; Chevallier,

2011; Aatola et al., 2013; Koch et al., 2014), but Lutz et al. (2013) document a

greater magnitude of the coefficient. In the time frame from 2013 to 2017, Batten

et al. (2021) find that natural gas is not significant. The only consistency of this

factor is again a positive sign. This supports on the one hand the assumption of

fuel switching, where electricity producers switch from coal to natural gas as input

for their energy generation, as gas produces about 50% fewer emissions than coal

(Benz and Trück, 2009). On the other hand, natural gas could also be viewed as a

proxy for economic activity.

The coefficient of electricity is insignificant, has a negative sign, and a small

size. However, in the time frames from 2005 to 2010 and 2013 to 2017 it was a

significant price determinant, with a positive coefficient and varying sizes (Alberola

et al., 2008a; Aatola et al., 2013; Batten et al., 2021). Thus, there is a change in

10



the sign, which might be due to the fact that the mix of the baseload electricity

production switches to greener methods to produce energy, which causes electricity

to have a negative and less strong relationship with the EUA return.

The clean dark spread is significant at the 10% level with a positive sign if it

is not controlled for any other factors. The sign turns negative in phase IV. The

magnitude of the coefficients found here is smaller than the ones found in prior

literature. Alberola et al. (2008a) find a significant effect of the clean dark spread

with a negative sign in phase I and Batten et al. (2021) confirm the sign in the

period from 2013 to 2017, however the coefficient is not significant. The positive

sign found here can be explained by the fact that the clean dark spread is above

the clean spark spread but close to zero in phase III, thus the electricity production

using coal is slightly more profitable and increases the allowance demand. In order

to have a measurable influence on the allowance price, the spreads need to be stable

so it is beneficial for companies to switch their input fuel. In phase IV, however, the

spreads are highly volatile, so that no clear effect can be identified.

The coefficient of the clean spark spread is insignificant and has different signs

depending on whether it is controlled for the other factors and which phase is

examined. Again, the magnitude of the coefficients is smaller than the ones found

in prior literature. In phase I and from 2013 to 2017, the clean spark spread had a

positive coefficient and was significant (Alberola et al., 2008a; Batten et al., 2021).

The change in sign, low magnitude, and insignificance of the coefficients, as well

as the spread being near to zero, makes it not possible to identify an interpretable

pattern.

We calculate the Ljung–Box (Ljung and Box, 1978) test for each regression in

Table 4 to investigate whether the residuals are truly independent. In phase III,

it can be seen that the null hypothesis of this test is rejected. However, in phase

IV the test cannot be rejected as easily, but we consider this phase for the same

robustness analysis as in phase III.
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5.1.2 Structural breaks within periods

The results above highlight that it is necessary to examine both phases separately

as substantial changes can be observed. Alberola et al. (2008a) show that such

differences exist within phases, and they have revealed that the publication of the

first verified emissions in phase I had a significant impact on the pricing dynamics

of the spot market. Thus, we use the minimum Lagrange Multiplier unit root test

of Lee and Strazicich (2013) to check whether there is a break in the intercept or the

trend slope of the data generating process of the logarithm of the price series of the

allowance spot price in phase III and IV, respectively. This test allows us to estimate

the potential breakpoints endogenously. Figure 2 shows the natural logarithm of

the allowance price together with the estimated breakpoints. We assume that these

breakpoints reflect a shift in the pricing mechanism of the allowance price, meaning

that the effect should be reflected when modeling the EUA return. The breakpoints

in each phase are shown by the dashed lines, while the solid line shows the shift

from one trading period to the next.

The potential breakpoint in phase III occurs on March 20, 2018. This break is

consistent with the publication of new EU ETS regulations on March 19, 2018

and with a general increase in the price level caused, among other things, by

the introduction of the MSR (European Commission and Directorate-General for

Climate Action, 2021). The breakpoint in phase IV is estimated to be on February

24, 2022, which coincides with the date on which Russia’s aggression against Ukraine

began. It seems reasonable that such an event has had an influence on the whole

economy in Europe and also on the EU ETS market. These two dates are used

to divide each phase into two parts and analyze the determinants of the allowance

return series and the change in their explanatory power over the period. The results

of Regression (1) for the sub-periods of phases III and IV are shown in Table 5 and

6, respectively.

In Table 5 it becomes visible that roughly the same factors remain significant in

the two sub-periods. However, natural gas is not significant in the first sub-period,

while it is again in the second, and coal is significant in first sub-period but not in

12



the second. The share of explained variance increases to a new high in the second

sub-period, hinting during the later part of phase III, the allowance price is more

strongly driven by the energy variables. But when we control for the breakpoint

using dummy variables, no coefficient is significantly different from each other across

the sub-periods, showing that there is no evidence supporting the hypothesis of

sub-periods in phase III. The Ljung–Box test can again be rejected giving rise for

further robustness checks.

In the first sub-period of phase IV, the lagged allowance return, oil, and coal

as well as the clean spark spread are significant factors; however the spread is only

significant if it is not controlled by the lagged allowance price. In the second sub-

period the clean dark spread is the single significant factor, but it is only significant

when it is controlled for all other factors and the F-Statistic is still insignificant. The

share of explained variance is increased compared to the complete phase and it is also

higher in the first sub-period. Furthermore, the coefficients of EUAt−1, oil, coal and

clean spark spread show a significant difference when we control for the breakpoint

using dummy variables. However, given the relatively short periods, these results

should be interpreted with caution. The null hypothesis of the Ljung–Box test can be

rejected in the first sub-period, but not in the second. For the sake of completeness,

we include both sub-periods of phase IV in the further robustness checks.

To sum up, most explanatory variables are not significant, the share of explained

variance is low, and there are only some variables which exhibit a significant change

at the 10% level over the sub-periods. Thus, different pricing regimes within trading

phases can be ruled out as a possible reason for the small explanatory power.

5.1.3 Non-linear relationships

Hintermann (2010) shows that the relationships between the allowance price and its

market fundamentals might be non-linear. To test this, we employ the RESET test

of Ramsey (1969) and apply it to Regression (1) for all periods discussed previously.

The corresponding p-values are reported in Table 7, where we test the inclusion of

second- and third-order polynomials in Panels (a) and (b), respectively. Under the
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null hypothesis, the coefficients of all higher polynomials are jointly zero. Rejection

implies adding higher-order polynomials to the model. The last column of Table 7

shows the p-value of Regression (1), including all variables for each time period. In

each of the other columns, only one variable is included to determine which factor

might have a non-linear relationship with the allowance return.

The results show that in each period the linear regression is misspecified

and non-linear relationships exist. At some point, each factor has a non-linear

relationship with the allowance return, with the exception of electricity. We include

each factor with its polynomials tested with the RESET test and employ the General

to Specific method to determine which are the relevant factors in each period. The

results of these regressions are shown in Table 8.

First, it has to be noted that the electricity return gets excluded from all

regressions. Thus, this factor does not have any explanatory power in the third

and fourth phase of the EU ETS. Furthermore, natural gas gets excluded for phase

IV, but is a significant factor with linear and non-linear relationships with the carbon

return in the sub-periods of this phase.

The allowance return has a non-linear relationship with itself in both trading

periods, while the coefficients are positive in phase III and negative in phase IV.

The overall effect of EUAt−1 on the carbon return is an increase in each period, no

matter the actual sign of the lagged allowance return. The extreme price changes

that would cause a decrease, as suggested by the negative non-linear coefficients,

happen rarely. Oil remains significant as a linear factor and starts to show non-linear

relationships with the allowance return at the later part of phase III, where the

signs of the coefficients are negative. Thus, the impact of more extreme returns

of oil on the allowance return would go against the economic activity effect, but

the size of these coefficients are caused by less than 10% of the data. Thus, the

prior explanation of the effect of the oil return remains valid. The coal return

starts to have non-linear relationships with the carbon return in phase IV, where

the non-linear factors now exhibit a negative coefficient. Through the non-linearity,

the interplay of the economic activity and substitution effect can be seen. The
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allowance return decreases when the coal return decreases as economic activity is

reduced, while the allowance return also decreases when the coal return increases, as

coal gets substituted by other inputs which produce fewer emissions. However, the

substitution effect only realizes by extreme values of coal returns. It is revealed that

natural gas is not a relevant factor for phase IV and the first sub-period of phase III.

While there is evidence for non-linear relationships, the overall the effect of natural

gas on the allowance return stays the same as in Section 5.1.1. Both spreads have

significant non-linear relationships with the allowance return in all periods under

investigation and increase the allowance return nearly always as the changes in the

spreads are rather small.

The share of explained variance increases for each period, but the effect is most

noticeable in phase IV. This is not surprising considering that mostly non-linear

factors remain from the General to Specific approach. Nevertheless, the explanatory

power falls short in comparison to the results of earlier phases (34.17% in phase I

Alberola et al., 2008a), which shows that simply adding higher polynomials is not

sufficient to explain the carbon price.

The performance of the linear and non-linear regressions for the entire phases

and their sub-periods worsens when EUA futures returns instead of spot returns

are considered. The explanatory power decreases further and the F-statistics are

insignificant. Only in the first sub-period of phase IV are the energy variables able

to explain about 13% of the EUA futures return variation. Considering non-linear

factors with the General to Specific approach, shows that the EUA futures return

can be explained significantly in each of the time periods discussed, reaching a high

of 19% in the first sub-period of phase IV.

5.2 Multivariate modeling

The different variables discussed in this paper influence each other in many ways,

e.g. the different fuel prices are expected to be cointegrated as they can be

substituted for each other in energy production. To tackle the endogeneity problem,

we consider a standard SVAR to estimate any interdependencies. Furthermore,
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long-term equilibria have been discussed in the literature (Bredin and Muckley,

2011; Creti et al., 2012; Koch et al., 2014), which may be of greater importance

than the short-term dynamics of the allowance price, as the permits are only needed

once per year. Thus, we also consider the possibility of cointegration.

5.2.1 SVAR

Using a SVAR enables us not only to tackle the problems of endogeneity but also to

consider possible lead–lag relationships, since prices are not recorded simultaneously

and agents might react with a delay. As the interpretation of the coefficients of a

SVAR is not as straightforward, we focus on the adjusted R2 and accumulated

impulse response functions. Note that the comparability with Hammoudeh et al.

(2014) is limited as they considered data from US American markets. However, we

expect similar results because the economic mechanisms should be comparable even

if the sample is different.

Based on AIC, we pick a SVAR(3) with 23 parameters per equation for phase

III and an SVAR(2) with 16 parameters per equation for phase IV. However, none

of these models improves the explanatory power for the allowance return. In phase

III, 1.17% can be explained by the SVAR, while in phase IV 0.38% can be explained.

Figure 3 displays the accumulated impulse response functions. The left column

shows the responses of the EUA return in percent to the different shocks in phase

III while the reactions in phase IV are shown in the right column.

We can see that a positive shock to the oil return causes a permanent same-

direction price effect of the EU emission allowances in phase III. Hammoudeh et al.

(2014) find a first positive and later negative effect of an oil shock, which aligns

with our results. Here, the argument of the economic activity effect takes hold,

where an increase in the return of a commodity represents an increase of economic

activity, causing more emissions and higher permit returns. The positive shock to

the change in clean dark spread also causes a permanent reaction, but this is only

narrowly significant at the 5% level. This shock increases the allowance return but

the increase is below 0.5%. The direction of the response aligns with economic
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expectation as an increased profit margin of energy generation using coal should

increase emissions and thus allowance prices. The reactions on a shock to the natural

gas or coal return are transitory and vanish after 2 days. Here, the shock to natural

gas causes an increase while Hammoudeh et al. (2014) find a decrease. Overall,

an increase seems more likely as power producers would switch to coal as an input

factor in energy production and therefore increase emissions. Further, the effect

of natural gas could also be explained with the economic activity effect. The only

variables that do not cause a significant response in phase III are electricity and the

clean spark spread.

In phase IV, shocks to all of the variables do not cause a significant response in

the allowance return. Based on the adjusted R2s, the performance of the two SVARs

for the allowance return is worse than the performance of an OLS regression. Thus,

this model also does not seem to be able to explain more recent permit prices, even

though Hammoudeh et al. (2014) found very high adjusted R2s of about 90% in

their sample from 2006 to 2013. Using EUA future returns instead of spot returns

does not change the results of this model significantly.

5.2.2 Cointegration

We employ cointegration analysis to determine the existence of potential long-term

equilibrium relationships between the price of allowances and its fundamentals.

Our approach broadly follows Creti et al. (2012), as we first consider bivariate

cointegration in order to identify which variables are truly cointegrated with the

allowance price. A bivariate analysis avoids spurious cointegration results, since

energy prices are cointegrated among themselves but not necessarily with the EUA

price. Table 9 shows the critical values and test statistics for the Johansen (1988)

test. For the sake of brevity, we only report results for which we find a significant

cointegrating relationship.

We can see that the allowance price in phase III is cointegrated with the

electricity price and the clean dark spread. To measure the significance of the

long-term equilibrium we estimate a VECM(3). The estimation results are provided
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in Table 10. Cointegration vector 1 is significant, documenting the long-term

equilibrium in the trivariate system. However, the share of explained variance is

only around 0.6%, which again falls short of the explanatory power of the OLS

regression. Thus, the long-term equilibrium in phase III of the EU ETS is not

sufficient to characterize the allowance price.

In phase IV, there is evidence for cointegration between the allowance price and

the clean spark spread. To model this relationship, we estimate a VECM(5) visible

in Table 10. The cointegrating vector is not significant, thus providing no support

for a long-term equilibrium in phase IV. The share of explained variance of this

VECM is 0.3%. That no cointegration can be found in phase IV is not surprising

due to the relatively short time span and the major economic disruptions during

this period, e.g. the lasting effects of the pandemic and the war in Ukraine.

To sum up, we find evidence for a long-term equilibrium in phase III even

though it does not explain a sizable share of the variation in the permit price. In

phase IV, we are not able to identify a significant long-term equilibrium. When

considering EUA futures instead of spot prices, there is no long-term equilibrium in

either trading phase.

6 Conclusion

In this paper, we investigate the price determinants of carbon allowance prices in the

most recent trading periods. We employ different econometric approaches that have

been suggested in the literature. We perform OLS regressions for phases III and

IV together, separately, and for endogenously defined sub-periods. Furthermore, we

estimate SVARs to address endogeneity concerns and employ Johansen cointegration

tests to identify long-term equilibria.

Our empirical results exhibit much lower explanatory power compared to what

has been documented in the literature for phases I and II. The reduced explanatory

power could be driven by the changing regulations, such as the composition of

industries that fall under the regulation. As the EUA market has matured, its
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integration with energy and electricity prices might have changed.
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Figure 1: Development of the price of EU ETS allowances.
This figure shows the development of the spot price of European emission allowances (EUA) in

Euros since the start of the EU ETS. The different trading phases are indicated by the vertical

dashed lines.

23



1

2

3

4

2014 2016 2018 2020 2022
Date

P
ric

e

Figure 2: EUA price series with breakpoints.
The figure shows the natural logarithm of the EUA spot price series over phases III and IV.

Breakpoints are estimated on this time series in each phase, respectively, with the minimum

Lagrange Multiplier unit root test of Lee and Strazicich (2013) to test for a break in the intercept

or slope of the time series. The end of phase III is marked by the solid gray line while the dashed

gray lines show the estimated breakpoints in each phase.
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Figure 3: Accumulated impulse response function of SVAR.
The figure shows the accumulated impulse response functions for phase III in the left column and

for phase IV in the right column. The gray bands visualize the 5% confidence intervals.
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Table 1: Literature overview.
The table lists a brief overview of the relevant literature on the EU ETS. The Table lists the time

period, the method, and a brief summary of the 5% significant coefficients or an important result,

as well as the adjusted R2 in parentheses.

Paper Phase Method Results
Time span

Mansanet-Bataller
et al. (2007)

Phase I Linear Regression Changes in Brent and natural
gas prices, extreme temperature
events (40.9% – 47.81%)

2005

Alberola et al.
(2008a)

Phase I Linear Regression Electricity, coal, oil, gas, clean
dark, and clean spark spread,
and extreme cold temperatures
and lagged EUA spot price

2005 – 2007
(with dummy variable for
structural break)

(10.47% – 35.58%)

Hintermann (2010) Phase I Structural model under
assumption of efficient
markets

Fuel prices, summer
temperatures, and precipitation
(5.74% – 61.12%)

2005 – 2007

Bredin and
Muckley (2011)

Phase I & II Cointegration analysis New Pricing regime in Phase II
along with increasing efficiency2005 – 2009

Creti et al. (2012) Phase I & II Cointegration analysis
(with dummy variable for
structural break)

Equilibrium relationship in both
phases with increasing
importance of fundamentals in
the second phase

2005 – 2010

Aatola et al. (2013) Phase I & II Linear Regression German electricity, gas, and coal
prices, mineral and paper (22% –
40.9%)

2005 – 2010 Instrumental Variables
Vector Auto Regression
(with dummy variables
for influential
observations)

Lutz et al. (2013) Phase II Markov regime-switching
model

Gas and stock index for both
volatility regimes2008 – 2012

Non–switching GARCH
model

Oil, coal, gas, stock index and
commodity index

Hammoudeh et al.
(2014)

Phase I, II
& III

Bayesion structural VAR Oil has a positive effect, gas and
electricity have a negative effect,
coal has a positive effect if
electricity is excluded

2006 – 2013

Koch et al. (2014) Phase II &
III

Linear Regression Economic sentiment index,
wind/solar production, and stock
index are significant while there
is no equilibrium relationship

Cointegration analysis
2008 – 2013

(9.7% – 44%)

Batten et al. (2021) Phase III Linear Regression Oil, coal, electricity, and clean
spark spread (1.8% – 12.27%)2013 – 2017

26



Table 2: Descriptive statistics.
This table shows the descriptive statistics of all variables for phases III and IV, respectively. It

reports mean, standard deviation, minima, and maxima, as well as the skewness and kurtosis of

each time series return, except for spreads in first differences only. We test means against zero

using a t-test and report the significance by stars, where ∗∗∗, ∗∗, and ∗ correspond to a significance

level of 1%, 5%, and 10%, respectively. Phase III spans from 01.01.2013 to 31.12.2020 (N = 1, 939),

while phase IV spans from 01.01.2021 to 31.03.2023 (N = 412).

(a) Phase III

Mean Std. Dev. Min. Max. Skewness Kurtosis

EUA spot price 0.001 0.034 −0.447 0.211 −1.312 19.227
Brent crude oil −0.001 0.025 −0.315 0.196 −1.336 27.003
Coal −0.0001 0.015 −0.180 0.177 0.149 35.212
Natural gas −0.0002 0.023 −0.294 0.297 1.383 64.316
Electricity −0.0003 0.256 −3.091 3.045 0.068 37.619
Clean dark spread −0.008 1.296 −18.580 25.110 2.546 103.415
Clean spark spread 0.008 0.992 −9.140 7.080 −0.588 16.582
EUA futures price 0.001 0.035 −0.431 0.245 −1.156 17.224

(b) Phase IV

Mean Std.Dev. Min. Max. Skewness Kurtosis

EUA spot price 0.002 0.036 −0.177 0.162 −0.450 3.087
Brent crude oil 0.002∗ 0.029 −0.156 0.100 −0.655 3.620
Coal 0.002 0.057 −0.541 0.327 −1.749 24.986
Natural gas 0.002 0.066 −0.580 0.452 −1.787 34.589
Electricity 0.001 0.259 −1.652 1.525 −0.139 7.666
Clean dark spread −0.061 22.635 −150.620 113.230 −0.346 11.042
Clean spark spread −0.044 20.210 −168.370 165.700 0.263 29.943
EUA futures price 0.002 0.036 −0.177 0.162 −0.451 3.112
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Table 3: Pearson–correlations.
This table presents Pearson–correlations of returns of all variables, except the spreads which are only differenced. Phase III, which spans from

01.01.2013 – 31.12.2020 (N = 1, 939), in panel (a) and phase IV, which spans 01.01.2021 – 31.03.2023 (N = 412), in panel (b). The significance of each

value is indicated by stars, where ∗∗∗, ∗∗, and ∗ correspond to a significance level of 1%, 5%, and 10%, respectively.

(a) Phase III

EUA spot price Brent crude oil Coal Natural gas Electricity Clean dark spread Clean spark spread EUA futures price

EUA spot price 1 0.185∗∗∗ 0.107∗∗∗ 0.081∗∗∗ −0.025 0.072∗∗∗ 0.012 0.334∗∗∗

Brent crude oil 1 0.122∗∗∗ 0.054∗∗ −0.044∗ −0.032 −0.02 −0.057∗∗

Coal 1 0.147∗∗∗ −0.009 0.111∗∗∗ 0.029 0.016
Natural gas 1 0.134∗∗∗ 0.076∗∗∗ −0.047∗∗ 0.02
Electricity 1 0.074∗∗∗ 0.018 0.009
Clean dark spread 1 0.411∗∗∗ 0.015
Clean spark spread 1 0.012
EUA futures price 1

(b) Phase IV

EUA spot price Brent crude oil Coal Natural gas Electricity Clean dark spread Clean spark spread EUA futures price

EUA spot price 1 0.087∗ 0.048 0.036 −0.024 −0.069 −0.028 0.999∗∗∗

Brent crude oil 1 0.226∗∗∗ 0.074 0.096∗ 0.132∗∗∗ −0.106∗∗ 0.085∗

Coal 1 0.228∗∗∗ 0.12∗∗ 0.262∗∗∗ −0.015 0.048
Natural gas 1 −0.021 0.13∗∗∗ −0.083∗ 0.032
Electricity 1 0.066 0.057 −0.021
Clean dark spread 1 0.4∗∗∗ −0.068
Clean spark spread 1 −0.027
EUA futures price 1
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Table 4: Time series regression in phases III and IV.
This table presents the coefficients of time series regressions of phase III (January 1, 2013 – December 31, 2020) in Panel (a) and phase IV (January

1, 2021 – March 31, 2023) in Panel (b). All variables are expressed in log-differences, except for spreads, which are only differenced. The Ljung–Box

(Ljung and Box, 1978) test, R2, adjusted R2, and F-statistic are calculated for each regression and are specified in the last four rows in each Panel.

The regressions are estimated with the OLS estimator. Newey–West standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ correspond to a significance

level of 1%, 5%, and 10%, respectively.

(a) Phase III

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

EUAt−1 0.005 0.013
(0.026) (0.026)

Brent crude oil 0.252∗∗∗ 0.238∗∗∗

(0.041) (0.043)
Coal 0.238∗∗∗ 0.154∗∗

(0.061) (0.062)
Natural gas 0.118∗∗∗ 0.086∗∗∗

(0.031) (0.033)
Electricity −0.003 −0.004

(0.003) (0.004)
Clean dark spread 0.002∗ 0.002

(0.001) (0.001)
Clean spark spread 0.0004 −0.0005

(0.001) (0.001)

Observations 1,938 1,939 1,939 1,939 1,939 1,939 1,939 1,938
Ljung–Box 20.109∗∗∗ 24.836∗∗∗ 20.623∗∗∗ 20.753∗∗∗ 20.262∗∗∗ 19.680∗∗∗ 20.648∗∗∗ 22.831∗∗∗

R2 0.00002 0.034 0.011 0.007 0.001 0.005 0.0001 0.051
Adjusted R2 -0.0005 0.034 0.011 0.006 0.0001 0.005 -0.0004 0.047
F-Statistic 0.044 68.419∗∗∗ 22.530∗∗∗ 12.838∗∗∗ 1.216 10.141∗∗∗ 0.265 14.709∗∗∗

continued on the next page
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Table 4: Time series regression in phases III and IV. continued

(b) Phase IV

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
(0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

EUAt−1 −0.082 −0.071
(0.052) (0.047)

Brent crude oil 0.108 0.097
(0.108) (0.083)

Coal 0.030 0.028
(0.062) (0.049)

Natural gas 0.020 0.021
(0.035) (0.032)

Electricity −0.003 −0.004
(0.008) (0.006)

Clean dark spread −0.0001 −0.0002
(0.0001) (0.0001)

Clean spark spread −0.00005 0.0001
(0.0002) (0.0001)

Observations 411 412 412 412 412 412 412 411
Ljung–Box 8.266 9.359∗ 9.885∗ 10.472∗ 10.648∗ 11.302∗∗ 10.934∗ 8.785
R2 0.007 0.008 0.002 0.001 0.001 0.005 0.001 0.023
Adjusted R2 0.004 0.005 -0.0001 -0.001 -0.002 0.002 -0.002 0.006
F-Statistic 2.786∗ 3.127∗ 0.956 0.547 0.231 1.957 0.321 1.379
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Table 5: Time series regression in sub-periods of phase III.
This table presents the coefficients of time series regression in the two sub-periods of phase III. All variables are expressed in log-differences, except

for spreads, which are only differenced. The total sample of Phase III was divided into two parts with the first part corresponding to the interval from

January 1, 2013 to March 20, 2018 in Panel (a) and the second part corresponding to the interval from March 21, 2018 to December 31, 2020 in Panel

(b). The Ljung–Box (Ljung and Box, 1978) test, R2, adjusted R2, and F-statistic are calculated for each regression and are specified in the last four

rows of each Panel. The regressions are estimated with the OLS estimator. Newey–West standard errors are in parentheses. ∗∗∗, ∗∗, and ∗ correspond

to significance levels of 1%, 5%, and 10%, respectively.

(a) January 1, 2013 to March 20, 2018

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.0005 0.001 0.0004 0.0005 0.0004 0.0005 0.0004 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

EUAt−1 0.004 0.012
(0.033) (0.032)

Brent crude oil 0.232∗∗∗ 0.204∗∗∗

(0.047) (0.048)
Coal 0.287∗∗∗ 0.222∗∗

(0.092) (0.093)
Natural gas 0.110∗ 0.055

(0.060) (0.056)
Electricity −0.004 −0.004

(0.005) (0.005)
Clean dark spread 0.002 0.004∗

(0.002) (0.002)
Clean spark spread −0.0005 −0.002

(0.002) (0.002)

Observations 1,322 1,323 1,323 1,323 1,323 1,323 1,323 1,322
Ljung–Box 40.208∗∗∗ 44.090∗∗∗ 40.811∗∗∗ 42.147∗∗∗ 40.696∗∗∗ 41.644∗∗∗ 40.971∗∗∗ 42.936∗∗∗

R2 0.00002 0.018 0.011 0.003 0.0004 0.004 0.0001 0.033
Adjusted R2 -0.001 0.017 0.010 0.002 -0.0003 0.004 -0.001 0.028
F-Statistic 0.025 24.329∗∗∗ 14.870∗∗∗ 3.541∗ 0.569 5.735∗∗ 0.167 6.495∗∗∗

continued on the next page
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Table 5: Time series regression in sub-periods of phase III. continued

(b) March 21, 2018 to December 31, 2020

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

EUAt−1 0.003 0.020
(0.040) (0.050)

Brent crude oil 0.265∗∗∗ 0.254∗∗∗

(0.069) (0.073)
Coal 0.197∗∗ 0.104

(0.079) (0.074)
Natural gas 0.122∗∗∗ 0.101∗∗

(0.037) (0.042)
Electricity −0.003 −0.004

(0.003) (0.004)
Clean dark spread 0.002 0.001

(0.001) (0.001)
Clean spark spread 0.001 0.0003

(0.001) (0.001)

Observations 614 615 615 615 615 615 615 614
Ljung–Box 11.658∗ 16.209∗∗∗ 12.819∗∗ 11.487∗ 11.606∗ 13.106∗∗ 11.624∗ 16.001∗∗∗

R2 0.00001 0.074 0.015 0.017 0.001 0.008 0.002 0.102
Adjusted R2 -0.002 0.073 0.013 0.015 -0.001 0.007 0.001 0.092
F-Statistic 0.005 49.030∗∗∗ 9.198∗∗∗ 10.298∗∗∗ 0.604 5.203∗∗ 1.483 9.856∗∗∗
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Table 6: Time series regression in sub-periods of phase IV.
This table presents the coefficients of time series regression in the two sub-periods of phase IV. All variables are expressed in log-differences, except

for spreads, which are only differenced. The total sample of phase IV was divided into two parts with the first part corresponding to the interval from

January 1, 2021 to February 24, 2022 in Panel (a) and the second part corresponding to the interval from February 25, 2022 to March 31, 2023 in

Panel (b). The Ljung–Box (Ljung and Box, 1978) test, R2, adjusted R2, and F-statistic are calculated for each regression and are specified in the

last four rows of each Panel. The regressions are estimated with the OLS estimator. Newey–West standard errors are in parentheses. ∗∗∗, ∗∗, and ∗

correspond to significance levels of 1%, 5%, and 10%, respectively.

(a) January 1, 2021 to February 24, 2022

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept 0.006∗∗∗ 0.003∗ 0.004∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.005∗∗∗ 0.004 0.003
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

EUAt−1 −0.255∗∗∗ −0.224∗∗∗

(0.048) (0.055)
Brent crude oil 0.347∗∗∗ 0.289∗∗ 0.345∗∗∗

(0.105) (0.131) (0.092)
Coal 0.122∗∗ 0.100∗∗ 0.101∗∗

(0.048) (0.040) (0.042)
Natural gas 0.034 0.047 0.040

(0.026) (0.093) (0.034)
Electricity 0.003 0.004 0.001

(0.011) (0.015) (0.008)
Clean dark spread 0.0001 −0.0001 −0.0001

(0.0002) (0.001) (0.0002)
Clean spark spread 0.001∗ 0.001 0.001∗∗∗

(0.0004) (0.002) (0.0004)

Observations 215 216 216 216 216 216 216 215 216
Ljung–Box 3.157 14.318∗∗∗ 17.414∗∗∗ 19.041∗∗∗ 18.265∗∗∗ 18.778∗∗∗ 16.516∗∗∗ 2.305 11.619∗∗

R2 0.063 0.061 0.037 0.004 0.001 0.004 0.021 0.162 0.123
Adjusted R2 0.059 0.057 0.033 -0.0003 -0.004 -0.0004 0.016 0.134 0.098
F-Statistic 14.434∗∗∗ 14.008∗∗∗ 8.314∗∗∗ 0.930 0.113 0.910 4.542∗∗ 5.734∗∗∗ 4.886∗∗∗

continued on the next page
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Table 6: Time series regression in sub-periods of phase IV. continued

(b) February 25, 2022 to March 31, 2023

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.0004 0.0001 0.00003 0.0001 0.0001 −0.0001 0.00003 0.0005
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.001)

EUAt−1 0.038 0.051
(0.056) (0.048)

Brent crude oil −0.018 0.045
(0.104) (0.082)

Coal −0.039 0.033
(0.058) (0.054)

Natural gas 0.003 0.028
(0.060) (0.032)

Electricity −0.010 −0.010
(0.011) (0.006)

Clean dark spread −0.0002 −0.0003∗∗

(0.0002) (0.0001)
Clean spark spread −0.0001 −0.0001

(0.0001) (0.0001)

Observations 194 195 195 195 195 195 195 194
Ljung–Box 6.808 5.302 4.984 5.283 5.530 5.881 5.170 8.206∗

R2 0.002 0.0002 0.004 0.00002 0.004 0.023 0.006 0.048
Adjusted R2 -0.004 -0.005 -0.001 -0.005 -0.001 0.018 0.001 0.012
F-Statistic 0.290 0.046 0.776 0.004 0.845 4.577∗∗ 1.232 1.338

34



Table 7: RESET test.
This table shows the results of the RESET test from Ramsey (1969) for the regressions in Tables

4, 5, and 6, respectively. Shown are the p–values of the test for misspecification of the functional

form, thus testing whether the addition of the factors to the power of two or three is beneficial.

Panel (a) shows the p–values if only squared factors are considered, while Panel (b) shows the

results if factors to the power of two and three are considered.

(a) Second–order polynomial

EUAt−1
Brent

crude oil
Coal

Natural
gas

Electricity
Clean
dark
spread

Clean
spark
spread

All

Phase III 0.044 0.604 0.529 0.314 0.902 0.868 0.597 0.473

01.01.13 –
20.03.18

0.010 0.582 0.741 0.435 0.463 0.595 0.896 0.344

21.03.18 –
31.12.20

0.048 0.408 0.427 0.387 0.976 0.924 0.448 0.499

Phase IV 0.393 0.349 0.064 0.193 0.584 0.098 0.012 0.002

01.01.21 –
24.02.22

0.954 0.409 0.107 0.859 0.614 0.589 0.276 0.332

25.02.22 –
31.03.23

0.227 0.601 0.020 0.114 0.488 0.364 0.012 0.013

(b) Second– and third–order polynomial

EUAt−1
Brent

crude oil
Coal

Natural
gas

Electricity
Clean
dark
spread

Clean
spark
spread

All

Phase III 0.001 0.142 0.240 0.020 0.807 0.002 0.100 0.0001

01.01.13 –
20.03.18

0.001 0.496 0.487 0.094 0.715 0.079 0.661 0.011

21.03.18 –
31.12.20

0.119 0.023 0.062 0.021 0.808 0.003 0.181 0.002

Phase IV 0.487 0.001 0.013 0.414 0.829 0.056 0.010 0.0001

01.01.21 –
24.02.22

0.906 0.083 0.270 0.115 0.873 0.019 0.441 0.035

25.02.22 –
31.03.23

0.417 0.040 0.063 0.044 0.771 0.444 0.027 0.026
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Table 8: Time series regression in phases III and IV.
This table presents the coefficients of a time series regression of phase III and phase IV, as well as

the two sub-periods identified for each phase separately. Equation (1) has been augmented with all

factors to the power of two and three. All variables are expressed in natural logarithms and first

differences, except for spreads, which are only differenced. The R2, adjusted R2, and F-statistic

are calculated for each regression and are specified in the last three rows. The regressions are

estimated with the OLS estimator. The significance of each coefficient is indicated, where ∗∗∗, ∗∗,

and ∗ correspond to a significance level of 1%, 5%, and 10%, respectively.

Phase III Phase IV

sub-periods: sub-periods:

Entire
01.01.2013 –
20.03.2018

21.03.2018 –
31.12.2020

Entire
01.01.2021 –
24.02.2022

25.02.2022 –
31.03.2023

Intercept 0.001∗ 0.001 0.002∗ 0.004∗∗ 0.007∗∗∗ −0.002
(0.001) (0.001) (0.001) (0.002) (0.002) (0.003)

EUAt−1 −0.233∗∗∗ 0.171∗

(0.065) (0.096)
EUA3

t−1 1.214∗∗∗ 1.260∗∗∗ −15.037∗∗∗ −23.684∗∗

(0.361) (0.377) (5.116) (9.219)
Brent crude
oil

0.226∗∗∗ 0.205∗∗∗ 0.321∗∗∗ 0.289∗∗∗ 0.501∗∗∗

(0.030) (0.047) (0.049) (0.081) (0.120)
Brent crude
oil2

−2.701∗∗ −7.791∗∗∗

(1.217) (2.703)
Brent crude
oil3

−2.250∗∗ −38.094∗∗∗ −79.251∗∗∗

(0.978) (13.376) (26.532)
Coal 0.156∗∗∗ 0.233∗∗∗ 0.109∗∗∗ 0.156∗∗

(0.050) (0.074) (0.040) (0.075)
Coal2 −0.181∗

(0.105)
Coal3 −4.599∗∗

(1.806)
Natural
gas

0.155∗∗∗ 0.243∗∗∗ 0.185∗∗∗ −0.105∗

(0.052) (0.068) (0.061) (0.063)
Natural
gas2

−0.151∗

(0.088)
Natural
gas3

−2.038∗ −2.948∗∗ −0.878∗∗∗ 0.753∗∗∗

(1.085) (1.204) (0.319) (0.287)
Clean dark
spread

0.004∗∗∗ 0.006∗∗∗ 0.004∗∗∗ −0.0002∗

(0.001) (0.002) (0.001) (0.0001)
Clean dark
spread2

0.0002∗∗∗ 0.0002∗∗∗ −0.00000∗∗∗

(0.0001) (0.0001) (0.00000)
Clean dark
spread3

−0.00002∗∗∗ −0.0001∗∗∗ −0.00001∗∗∗ −0.00000∗∗∗ −0.00000∗∗∗

(0.00000) (0.00002) (0.00000) (0.000) (0.00000)
Clean spark
spread

−0.002∗∗ −0.003∗∗ −0.002∗ 0.001∗∗∗

(0.001) (0.001) (0.001) (0.0003)
Clean spark
spread2

−0.0005∗∗ −0.001∗∗ 0.00000∗∗∗ −0.00003∗∗ 0.00000∗∗∗

(0.0002) (0.0002) (0.00000) (0.00002) (0.00000)

Observations 1,938 1,322 615 411 215 194
R2 0.067 0.046 0.136 0.101 0.241 0.137
Adjusted R2 0.062 0.042 0.123 0.083 0.199 0.100
F-Statistic 13.820∗∗∗ 10.591∗∗∗ 10.589∗∗∗ 5.631∗∗∗ 5.847∗∗∗ 3.686∗∗∗
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Table 9: Results of Johansen’s (1988) cointegration eigenvalues test.
This table shows the null hypothesis, critical values and test statistics of bivariate Johansen (1988)

eigenvalue tests. The critical values correspond to the 95% significance level. The lag length is

determined using the AIC.

Null
hypothesis

Critical
value

Phase III Phase IV

with Electricity with Clean dark spread with Clean spark spread

None 15.67 28.276 22.695 21.403
At most 1 9.24 2.159 1.809 9.091

Lags 13 4 6
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Table 10: VECM for phases III and IV.
This table presents the results of a VECM estimation for phases III and IV. All variables are

expressed in natural logarithms, except for spreads. A VECM(3) was estimated for phase III and

a VECM(5) for phase IV. Here, dl1 stand for log-difference with one lag. The F-statistic and the

adjusted R2 were calculated and are reported in the last two rows. ∗∗∗, ∗∗, and ∗ correspond to

significance levels of 1%, 5%, and 10%, respectively.

Phase III Phase IV

Coefficient Coefficient

Cointegration vector 1 −0.003∗∗ −0.0003
Cointegration vector 2 0.004

dl1

EUA spot price 0.001 −0.076
Electricity 0.006∗

Clean dark spread 0.0003
Clean spark spread 0.0001

dl2

EUA spot price −0.069∗∗∗ 0.047
Electricity 0.005
Clean dark spread −0.001
Clean spark spread −0.0001

dl3

EUA spot price −0.044∗ −0.060
Electricity 0.006
Clean dark spread −0.001
Clean spark spread −0.0002

dl4

EUA spot price
Electricity −0.031
Clean dark spread
Clean spark spread −0.0002

dl5

EUA spot price −0.009
Electricity
Clean dark spread
Clean spark spread 0.0001

R2 0.012 0.029
Adjusted R2 0.006 0.003
F-Statistic 2.059∗∗ 1.093
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