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1 Introduction

Testing for structural changes and estimating break points occurring at unknown dates has

been a topic of significant interest in the economics and econometrics literature for a long time.

A vast amount of research has focused on estimation and testing for single structural breaks

in a univariate time series regression framework with weak correlations. Bai and Perron (1998)

extended this literature by introducing estimators and tests for multiple break points at unknown

dates in a univariate time series regression (see, for instance, Perron (2006) and Casini and

Perron (2019), for interesting reviews).

Developments on estimation and testing for breaks in multivariate regression models are more

limited. Bai (1997b) considers estimation of a single break in a multivariate regression set-up

and, Bai et al. (1998) and Preuss et al. (2015) provide tests and estimators for common breaks

in a multivariate system of short-memory time series. Qu and Perron (2007) propose a versatile

framework for estimating and testing multiple, not necessarily common, breaks that occur at

unknown dates in a multivariate short-memory time series regression framework, allowing for

breaks in the mean as well as in the covariance of the system.

In contrast, in the long memory context, literature on structural breaks testing is more

limited. The challenge in testing for structural breaks in time series that display long memory

behaviour resides in the fact that both phenomena (structural breaks and long memory) are

observationally equivalent in finite samples, i.e., long memory can cause false rejections of tests for

structural changes and vice versa (see, for instance, Sibbertsen (2004) and Hassler et al. (2014),

for an overview of literature addressing this problem).

Several approaches have been proposed to test for a single structural break in univariate

long memory time series models; e.g., Wang (2008), Shao (2011), Dehling et al. (2013), Iacone

et al. (2014), Betken (2016), Wenger and Leschinski (2019), and Wenger and Less (2020). A

recent overview is provided in Wenger et al. (2019). Lavielle and Moulines (2000) and Yao (1988)

estimated multiple breaks in a univariate framework using information criteria, with Lavielle and

Moulines (2000) allowing for long-range dependence and Yao (1988) assuming an independent

and identically distributed framework. However, empirical evidence suggests that information

criteria tend to over-estimate the number of break points (see, for instance, Hall et al. (2013)).

In this paper we contribute to the literature on structural breaks in a multivariate regression

context by introducing estimators and tests for multiple structural breaks that occur at unknown
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dates in a multivariate long memory time series regression framework with deterministic or

stochastic regressors, allowing for fractional cointegration. To the best of our knowledge this is

the first paper providing tests for multiple breaks under long memory and to consider breaks in

a multivariate, possibly fractionally cointegrated, system.

Specifically, we generalise the framework of Qu and Perron (2007) in three directions. First,

we use a likelihood-ratio based approach to estimate breaks in the mean and covariance of the

system of long memory time series. We show consistency and provide the limiting distributions

of these estimators under long memory. Second, we provide tests for multiple structural changes,

generalizing the testing ideas of Bai and Perron (1998), which are based on the segmentation of

the time series and repeated testing for breaks within these segments. Importantly, however, the

limiting distribution of the Bai and Perron (1998) approach strongly depends on the assumption

of at most weakly correlated segments, since it is derived as the product of the limiting distri-

butions for each segment. However, this assumption is infeasible under long-range dependence,

as the segments are strongly correlated and, consequently, the limiting distribution of the Bai

and Perron (1998) test does not hold in this situation. We circumvent this problem by sug-

gesting to repeatedly test for breaks in the residuals, after applying our consistent break point

estimator and eliminating the largest break in each step. Third, we extend our procedures to

stochastic, possibly non-stationary, fractionally integrated regressors and allow testing for breaks

in fractional cointegration.

The procedures that we introduce only depend on the maximal memory parameter of the

multivariate system of long memory time series. The limiting distribution of our test is different

when all memory parameters are equal compared to when at least two of them are different.

Additionally, in order to prove our results we need to derive a multivariate generalized Hájek-

Rényi-type inequality under long-range dependence. The finite sample performance of the test

procedures is analysed in a Monte Carlo study, and the empirical usefulness illustrated with two

applications to real data, one where we examine a system of inflation series and another that

focuses on benchmark government bonds.

This paper focuses on testing for structural breaks in the coefficients and the covariance

matrix of a multivariate regression model with long-range dependence, assuming that the memory

parameters remain constant over time, hence ruling out breaks in persistence. The latter are

considered in, among others, Sibbertsen and Kruse (2009), Yamaguchi (2011), Martins and

Rodrigues (2014) and Hassler and Meller (2014), and can easily be mistaken for mean shifts as
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they can lead to divergence of the test statistic due to wrong standardization; see Sibbertsen and

Willert (2012). A procedure for disentangling these two phenomena in a univariate time series

context can be found in Wingert et al. (2022). However, a generalization of this approach to the

situation considered here is beyond the scope of this paper.

The remainder of the paper is organized as follows. Section 2 provides the model and the

underlying assumptions. Section 3 introduces the break point estimator and Section 4 the testing

procedure considering that regressors are deterministic. The case of stochastic, possibly fraction-

ally integrated, regressors is given in Section 5. Section 6 contains a Monte Carlo study of the

finite sample properties of the break point estimators and of the test procedures, and Section

7 provides two empirical applications. Section 8 concludes. Finally, an appendix collects the

proofs for all results presented in the main text.

2 The Model and Assumptions

This paper focuses on the detection of structural changes in multivariate regression models

allowing for long memory innovations. Specifically, an n dimensional system of time series ut

is said to exhibit multivariate long-range dependence or long memory with integration order

D = (d1, . . . , dn)
′ and −1/2 < dk < 1/2, for k = 1, . . . , n, if its spectral density behaves local to

the origin, i.e.,

f(λ) ∼ Λ(D)GΛ(D)∗, (1)

where Λ(D) = diag(Λ1(d1), . . . ,Λn(dn)), Λk(dk) = λ−dkei(π−λ)dk/2, k = 1, . . . , n, i is the imagi-

nary number and dk the memory parameter of series k. G is a real, positive definite, finite and

symmetric matrix and Λ(D)∗ denotes the complex conjugate of Λ(D). Furthermore, in what

follows, d = max{d1, . . . , dn}.

Remark 1. The assumption on G is standard in defining multivariate long memory and ex-

cludes fractional cointegration. However, for the estimators and tests we propose next it is of

no relevance whether the series are fractionally cointegrated. We therefore stick to the standard

assumption keeping in mind that relaxing the assumptions on G will not affect our procedures

for now. We will, however, relax this assumption below in order to be able to handle breaks in a

(fractionally) cointegrated framework. ♢

- 4 -



Consider a system of n time series each of length T , with a total number m of structural

changes. The break dates in the system are denoted by the m× 1 vector T = (T1, . . . , Tm) and,

for ease of calculation, we set T0 = 1 and Tm+1 = T . We use the convention that a subscript j

indexes a regime (j = 1, . . . ,m+ 1), a subscript t indexes a temporal observation (t = 1, . . . , T )

and a subscript i indexes an equation (i = 1, . . . , n). The number of regressors in each equation

i is defined as q and zt is the set which includes the regressors at time t from all equations, i.e.,

zt = (z′
1t, . . . ,z

′
nt)

′ is an nq×1 vector. In what follows, we first consider the case of deterministic

regressors but relax this assumption to allow for stochastic regressors in Section 5.

Consider the model,

yt = x′
tβj + ut, j = 1, ...,m+ 1, (2)

where yt is an n × 1 vector, xt = [(I ⊗ z′
t)S]

′ is an n × p with p ≤ q matrix, I is an n × n

identity matrix, S is an nq × p full column rank selection matrix with entries 0 and 1, and ut is

an n×1 vector error process (whose properties will be detailed below) with zero vector mean and

covariance matrix Σj , for Tj−1 + 1 ≤ t ≤ Tj , j = 1, . . . ,m+ 1. The parameters to be estimated

in regime j are given by the p × 1 vector of parameters βj and the matrix Σj . To allow for

restrictions in our model we consider,

g(β, vec(Σ)) = 0,

where β = (β′
1, . . . ,β

′
m+1)

′ is a (m + 1)p × 1 vector of parameters, Σ = (Σ1, . . . ,Σm+1) is an

n × (m + 1)n matrix, and g(·) is an r-dimensional vector of restrictions. If required, it is also

possible to allow for cross-equation restrictions across regimes in this setting.

To simplify notation, we rewrite (2) using matrix notation. Let Y = (y′
1, . . . ,y

′
T )

′ be the

nT × 1 vector of dependent variables, U = (u′
1, . . . ,u

′
T )

′ the nT × 1 error vector and X =

(x′
1, . . . ,x

′
T )

′ the nT × p matrix of regressors. Form the block partition of matrix X, which we

denote as X̃, such that for a given partition of the sample using the breaks at T1, . . . , Tm, X̃ is

defined as the nT × p(m+ 1) matrix X̃ = diag(X1, . . . ,Xm+1), where Xj , j = 1, . . . ,m+ 1, is

the n(Tj − Tj−1)× p subset of X that corresponds to observations in regime j. Similarly, define

the subvector U j of U . Hence, using this notation, the regression system in (2) can be expressed

as Y = X̃β + U . Denoting the true values of the parameters with a 0 superscript, the data

generating process is Y = X̃
0
β0 + U . Here, X̃

0
is the diagonal partition of X based on the

true break dates T 0
1 , . . . , T

0
m.

To derive our approach we impose the following set of assumptions, which are similar to those
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of Qu and Perron (2007) but, with the important difference that the errors, ut, are allowed to be

long-range dependent. We assume that the memory is introduced through ut and thus that xt is

mostly short-range dependent so that the process x′
tut is of the same order of integration as ut.

This is a simplifying assumption which is not necessary and will be relaxed when introducing

the stochastic regressors framework.

Assumption 1. For each j = 1, . . . ,m+ 1 and lj ≤ T 0
j − T 0

j−1, l
−1
j

∑T 0
j−1+lj

t=T 0
j−1+1

xtx
′
t

a.s.−−→ Q0
j as

lj → ∞, with Q0
j being a nonrandom positive definite matrix not necessarily the same for all j.

Assumption 2. There exists an l0 > 0 such that for all l > l0, the minimum eigenvalues of

l−1
∑T 0

j +l

t=T 0
j +1

xtx
′
t and of l−1

∑T 0
j

t=T 0
j −l

xtx
′
t, j = 1, ...,m, are bounded away from zero.

Assumption 3. The matrix
∑l

t=k xtx
′
t is invertible for l − k ≥ k0 for some 0 < k0 < ∞.

Assumption 4. ut has multivariate long memory dynamics, as defined in (1), with

ut − E[ut] = A(L)εt =
∞∑
j=0

Ajεt−j ,

where
∑∞

j=0 ∥Aj∥2 < ∞ and ∥·∥ denotes the supremum norm. It is assumed that E(εt|Ft−1) = 0,

and E(εtε
′
t|Ft−1) = Iq a.s. for t = 0,±1,±2, . . . , where Ft denotes the σ-field generated by εs,

s ≤ t and Iq is a q × q identity matrix. Furthermore, there exists a scalar random variable ϵ

such that E(ϵ2) < ∞, and for all τ > 0 and some K > 0 it holds that P (∥ϵ∥2 > τ) ≤ KP (ϵ2 >

τ). In addition, for a, b, c, d = 1, 2, and t = 0,±1,±2, . . ., E(εatεbtεct|Ft−1) = µabc a.s. and

E(εatεbtεctεdt|Ft−1) = µabcd a.s., where |µabc| < ∞ and |µabcd| < ∞.

Assumption 5. Assumption 4 holds with ut replaced by x′
tut or utu

′
t−Σ0

j , for T 0
j−1 < t ≤ T 0

j ,

j = 1, . . . ,m+ 1.

Assumption 6. The magnitudes of the shifts satisfy β0
T,j+1−β0

T,j = νTc1j and Σ0
j+1,T−Σ0

j,T =

νTc2j , where (c1j , c2j) ̸= 0 are vectors of constants independent of T . Moreover, νT is either a

positive number independent of T or a sequence of positive numbers that satisfy νT → 0 and

T 1/2−dνT /(log T )
2 → ∞.

Assumption 7. (β0,Σ0) ∈ Θ̄ with Θ̄ = {(β,Σ) : ∥β∥ ≤ c1, λmin(Σ) ≥ c2, and λmax(Σ) ≤

c3} for some c1 < ∞, 0 < c2 ≤ c3 < ∞, where λmin and λmax denote the smallest and largest

eigenvalues, respectively.

Assumption 8. 0 < λ0
1 < · · · < λ0

m < 1 with T 0
i = [Tλ0

i ].
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Our assumptions include the standard fractionally integrated vector autoregressive moving

average (FIVARMA) model as well as long memory panel data models and regression models

with exogenous regressors and long memory errors. However, unit root regressors are ruled out

by Assumption 1. Moreover, regressors can have different distributions in different regimes.

This is necessary because a change in a dynamic model leads to changes in the moments of the

regressors. Assumption 2 rules out the case of local collinearity to ensure break identification.

Assumption 3 is a standard invertibility assumption. Assumptions 4 and 5 state that we consider

a long memory regression framework and that the order of integration is solely determined from

ut. Our conditions allow for conditional heteroscedasticity in ut. However, perturbation in the

error term is excluded as this would bias estimation of the memory parameter and thus lead

to inconsistent testing. Assumption 6 ensures that the breaks are asymptotically non-negligible.

Using a fixed νT captures large breaks whereas a shrinking νT gives small and intermediate breaks

in finite samples. The latter ensures an asymptotic theory for the break date estimators which

does not depend on the actual distribution of the regressors and errors. It should be noted that

we assume the break size to depend on the memory of the errors. The stronger the persistence

of the errors the larger the break needs to be in order to be detected. Assumption 7 makes

sure that the errors have a non-degenerate covariance matrix and a finite conditional mean, and

Assumption 8 ensures distinct breaks. No other assumptions on the breaks are needed. This

includes that the breaks do not need to occur contemporaneously in each series. So we allow

each series to have breaks at different times or not to break at all.

Additionally, in order to derive the limiting distribution of the test under the null hypothesis

of no structural change, we also require the following additional assumptions.

Assumption 9. T−1
∑⌊Ts⌋

t=1 xtx
′
t

p−→ sQ, uniformly in s ∈ [0, 1], with Q being some positive

definite matrix.

Assumption 10. The errors {ut} form an array of long-range dependent processes as defined in

Assumption 4 and, additionally, E(utu
′
t) = Σ0 for all t, and T−1/2−D

∑[Ts]
t=1 x

′
tut ⇒ Φ1/2WD(s),

where Φ = plim
T→∞

T−1X ′(In ⊗Σ0)X and WD(s) is a vector of independent fractional Brownian

motions of type I1. Also, with ηt ≡ (ηt1, . . . , ηtn)
′ = (Σ0)−1/2ut, we have T−1/2−D

∑[Ts]
t=1 (ηtη

′
t −

In) ⇒ ξD(s), where ξD(s) is an n × n matrix of fractional Brownian motion processes with

Ω = Var(vec(ξD(1))). Moreover, E[ηtkηtlηth] = 0, for all k, l, h and for every t.

1For a detailed discussion of fractional Brownian motions of type I and type II cf. Marinucci and Robin-
son (1999).
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Assumption 9 rules out trending regressors and requires that the second moment matrix of

the regressors converges in probability to the same limiting matrix throughout the sample. This

entails that we do not allow for a change in the distribution of the regressors without a change

in the coefficients of the regressors. In addition, Assumption 10 requires the error process to be

stable throughout the sample so that a functional central limit theorem applies to the product

of regressors and errors.

3 Estimation of the Break Dates and Model Parameters

The dates and number of breaks are estimated by restricted Quasi-Maximum Likelihood (QML)

conditional on a given partition of the sample T = (T1, . . . , Tm), and the tests for the number of

breaks are based on likelihood-ratio statistics.

Assuming Gaussian serially uncorrelated errors the quasi-likelihood function is,

LT (T ,β,Σ) =

m+1∏
j=1

Tj∏
t=Tj−1+1

f(yt|xt;βj ,Σj),

where

f(yt|xt;βj ,Σj) =
1

(2π)n/2|Σj |1/2
exp

(
−1

2
[yt − x

′
tβj ]

′
Σ−1

j [yt − x
′
tβj ]

)
,

and the quasi-likelihood-ratio statistic is,

LRT (T ,β,Σ) =

∏m+1
j=1

∏Tj

t=Tj−1+1 f(yt|xt;βj ,Σj)∏m+1
j=1

∏T 0
j

t=T 0
j−1+1

f(yt|xt;β
0
j ,Σ

0
j )
.

We aim to estimate the values of (T1, . . . , Tm,β,Σ) under the restriction g(β, vec(Σ)) = 0,

by maximizing the restricted quasi-likelihood ratio statistic,

RLRT (T ,β,Σ) = LRT (T ,β,Σ) + l
′
g(β, vec(Σ)), (3)

where l is an r-dimensional vector of weights.

Before proceeding, the following assumption on the minimal regime length is also required.

Assumption 11. The maximization of (3) is taken over all partitions T = (T1, . . . , Tm) =

(Tλ1, . . . , Tλm), for some ϵ > 0, in the set

Λϵ = {(λ1, . . . , λm) : |λj+1 − λj | ≥ ϵ, λ1 ≥ ϵ, λm ≤ 1− ϵ}.

This assumption is standard in the structural breaks literature and states that some percent-

age of the data needs to be skipped at the beginning and end of the sample before maximization

of the likelihood and thus, that potential breaks cannot occur in a possible small window at the
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beginning and end of the sample period. Other than in Qu and Perron (2007), this assumption

is essential for our procedure to work as Property 2 in the appendix and therefore the consis-

tency of the break point estimators proves wrong otherwise. Qu and Perron (2007) prove this

property and consistency of the estimator when maximizing over the whole sample by means of

the standard law of iterated logarithm. As this no longer holds under long memory and needs

to be replaced by a law of iterated logarithm for fractional Brownian motions, the arguments

used by Qu and Perron (2007) to prove Property 2 are no longer valid and the property does

not apply. However, these arguments are needed for the endpoints and therefore Assumption 11

circumvents this problem.

We can now establish the rate of convergence of this estimator under long-range dependence.

Note that all results that follow depend on the vector of memory parameters D. For the time

being, we assume D to be known and comment on the estimation of the memory parameters, to

make the procedures feasible, after presenting all of our results.

Lemma 1. Under Assumptions 1 to 8 and 11 it follows, for j = 1, . . . ,m, that ν2T (T̂j − T 0
j ) =

OP (1), and for j = 1, . . . ,m+1, that T 1/2−d(β̂j −β0
j ) = OP (1) and T 1/2−d(Σ̂j −Σ0

j ) = OP (1).

The results in Lemma 1 are similar to those in Bai (1997b), Bai and Perron (1998), Bai (2000),

and Qu and Perron (2007), but with a major difference, in that they hold under long-range

dependence in the error terms. Also, the rate for the break date estimator is fast enough not to

affect the estimation of the model parameters asymptotically. Therefore, we have the following

result that we state without proof.

Lemma 2. Under the Assumptions of Lemma 1, the limiting distribution of T 1/2−d(β̂ − β0)

when the break dates are consistently estimated is the same as that under known break dates.

These results are necessary for our tests on the number of potential break points later. It

allows us also to derive results regarding the limiting distribution of the restricted likelihood under

long memory. We can now split the restricted likelihood in one part containing the break dates

and the true parameter values, so that restrictions to these values do not affect the estimation of

the break dates; and the other part involving the true values of the break dates, model parameters

and restrictions, so that the limiting distribution of the model parameters is affected by these

restrictions, but not by the estimation of the break dates. With these comments in mind it is

obvious that Theorem 1 of Qu and Perron (2007) still holds under our set of assumptions, where

the aforementioned split of the maximization problem in a term concerning the estimate of the
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break dates and a term that does not involve the break date estimates is made mathematically

precise.

Moreover, this enables us to show that Theorem 2 of Qu and Perron (2007) also holds

under long-range dependence. This result concerns the limiting distribution of the break dates.

However, the drawback of this result is that the limiting distribution of the break dates depends

on the true error distribution, which is a standard problem in the structural breaks literature

and is usually accounted for by assuming shrinking breaks with an increasing sample size. To do

so trending regressors need to be ruled out.

Assumption 12. Let ∆T 0
j = T 0

j − T 0
j−1. For j = 1, . . . ,m, as ∆T 0

j → ∞, uniformly in

s ∈ [0, 1], (∆T 0
j )

−1
∑T 0

j−1+[s∆T 0
j ]

t=T 0
j−1+1

xtx
′
t

P−→ sQ0
j , with Q0

j being a nonrandom positive definite

matrix not necessarily the same for all j.

With this additional assumption the following Theorem characterizing the limiting distribu-

tion for the break date estimators can be stated.

Theorem 1. Let ηt = (ηt1, . . . , ηtn) = (Σ0
j )

−1/2ut, for t ∈ [T 0
j−1 + 1, T 0

j ] and assume that

E[ηtkηtlηth] = 0, for all k, l, h and for every t. Under Assumptions 1 to 8, 11 and 12 with

(c1,j , c2,j) as in Assumption 6 and νt → 0, such that T 1/2−dνT /(log T )
2 → ∞, it follows, for

j = 1, . . . ,m, as T → ∞ that,

∆2
1,j

Γ2
1,j

ν2T (T̂j − T 0
j ) ⇒


− |u|

2 +Wj,d(u), for u ≤ 0

− |u|
2

∆2,j

∆1,j
+

Γ2,j

Γ1,j
Wj,d(u), for u > 0,

(4)

where ⇒ denotes weak convergence under the Skorokhod topology, Wj,d(u) is a fractional Wiener
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process defined on the real line and

∆1,j =
1

2
tr(A2

1,j + c
′
1,jQ1,jc1,j),

∆2,j =
1

2
tr(A2

2,j + c
′
1,jQ2,jc1,j),

A1,j =(Σ0
j )

1/2(Σ0
j+1)

−1c2,j(Σ
0
j )

−1/2,

A2,j =(Σ0
j+1)

1/2(Σ0
j )

−1c2,j(Σ
0
j+1)

−1/2,

Γ1,j =

(
1

4
vec(A1,j)

′
Ω0

1,j vec(A1,j) + c
′
1,jΠ1,jc1,j

)1/2

,

Γ2,j =

(
1

4
vec(A2,j)

′
Ω0

2,j vec(A2,j) + c
′
1,jΠ2,jc1,j

)1/2

,

Q1,j =plim
T→∞

(T 0
j − T 0

j−1)
−1

T 0
j∑

t=T 0
j−1+1

xt(Σ
0
j+1)

−1x
′
t,

Q2,j =plim
T→∞

(T 0
j+1 − T 0

j )
−1

T 0
j+1∑

t=T 0
j +1

xt(Σ
0
j )

−1x
′
t,

Π1,j = lim
T→∞

Var

(T 0
j − T 0

j−1)
−1/2

 T 0
j∑

t=T 0
j−1+1

xt(Σ
0
j+1)

−1(Σ0
j )

1/2ηt


 ,

Π2,j = lim
T→∞

Var

(T 0
j+1 − T 0

j )
−1/2

 T 0
j+1∑

t=T 0
j +1

xt(Σ
0
j )

−1(Σ0
j+1)

1/2ηt


 ,

and

Ω0
1,j = lim

T→∞
Var

vec

(T 0
j − T 0

j−1)
−1/2

T 0
j∑

t=T 0
j−1+1

(ηtη
′
t − In)


 ,

Ω0
2,j = lim

T→∞
Var

vec

(T 0
j+1 − T 0

j )
−1/2

T 0
j+1∑

t=T 0
j +1

(ηtη
′
t − In)


 .

4 Testing for Multiple Breaks in Multivariate Time Series

In this section we introduce two likelihood-ratio based tests for multiple breaks in a multivariate

system of long memory time series. The first procedure tests the null of no breaks against the

alternative of a prespecified number of breaks, whereas the second approach tests against the

alternative of an unknown number of breaks given an upper bound. Iterative application of the

second procedure is one of the main ingredients of our proposed procedure to identify multiple

breaks in a long memory framework.
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Our tests allow testing all parameters or only a subset of the coefficients of the regressors,

β, or of the covariance matrix of the errors, Σj , for change per regime j, where 1 ≤ j ≤ m. We

acknowledge this dependence in the specification of our test statistic by considering the total

number, pb, of coefficients allowed to change across regimes, and allowing nbd diagonal entries of

Σj and nbo entries in the upper triangle of Σj to change across regimes.

Specifically, consider the system specification,

yt = x′
atβa + x′

btβbj + ut, for Tj−1 + 1 ≤ t < Tj and j = 1, . . . ,m+ 1,

where βbj is a pb dimensional vector. Moreover, the covariance matrix of the errors is,

Σj = E(utu
′
t), for Tj−1 + 1 ≤ t < Tj and j = 1, . . . ,m+ 1.

To simplify notation we also need the full row rank matrix H of dimension (nbd+2nbo)×n2.

This is chosen so that H vec(Σ) is the nbd+2nbo dimensional vector of entries allowed to change.

Thus, it contains both upper and lower triangle covariance entries.

4.1 The Likelihood-Ratio Test

First, we introduce a likelihood-ratio test of no breaks versus the alternative hypothesis of pre-

cisely m breaks under long memory, i.e.

H0 : K = 0 vs H1 : K = m.

Denoting the log-likelihood value by log L̂T (T1, . . . , Tm), the test statistic is the supremum of the

likelihood-ratio over all admissible partitions in the set Λϵ defined in Assumption 11, i.e.,

1

T 2d
sup LRT (m, pb, nbd, nbo, ϵ) =

2

T 2d
sup

(λ1,...,λm)∈Λϵ

[
log L̂T (T1, . . . , Tm)− log L̃T

]
=

2

T 2d
[log L̂T (T̂1, . . . , T̂m)− log L̃T ], (5)

where the log-likelihood, log L̃T , is obtained by estimating β and Σ under the null hypothesis

of no breaks. The list of estimated break points (T̂1, . . . , T̂m) contains the QMLE obtained by

considering only the partitions in Λϵ. As we assume a minimal length ϵ for each segment this

parameter will affect the limiting distribution of the test.

Theorem 2. Under Assumptions 1-11 with the supLRT (m, pb, nbd, nbo, ϵ) test in (5) con-

structed for an alternative hypothesis H1 in the class of models described in this Section, as

T → ∞ it follows that,

1

T 2d
supLRT (m, pb, nbd, nbo, ϵ) ⇒ sup

(λ1,...,λm)∈Λϵ

m∑
j=1

LRj(λ, d, pb, n
∗
b), (6)
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with

LRj(λ, d, pb, n
∗
b) =

∥λjW
∗
d,pb

(λj+1)− λj+1W
∗
d,pb

(λj)∥2

(λj+1 − λj)λjλj+1

+
1

2

(
λjW

∗
d,n∗

b
(λj+1)− λj+1W

∗
d,n∗

b
(λj)

)′
HΩH ′

×
(
λjW

∗
d,n∗

b
(λj+1)− λj+1W

∗
d,n∗

b
(λj)

)/
((λj+1 − λj)λjλj+1),

where λ = (λ1, ..., λm) and λm+1 = 1. The vectors W ∗
d,pb

(·) and W ∗
d,n∗

b
(·) are of dimensions pb

and n∗
b = (nbd + 2nbo), respectively, d = max(d1, ..., dq), with q ∈ {pb, n∗

b} and n∗
b = rank(H),

and are defined as,

W ∗
D,n(·) =

(
W ∗

dj
(·)
)
j=1,...,n

, W ∗
dj
(·) =


Wdj (·) if dj = max1≤i≤n di,

0 else,

where Wdj (.) is a univariate fractional Brownian motion of type I with memory parameter dj.

Remark 2. Note that the limiting distribution in (6) depends on the number of series with

the highest (or maximum) memory parameter d, i.e., only the series in the test statistic with

the highest memory parameter in the vector D = (d1, . . . , dn) contribute asymptotically to the

limiting distribution. This, however, poses a problem in practice as it is unlikely for estimated

memory parameters di, i = 1, ..., n, to be equal so that the dimension of the limiting distribution

may always be one in practice. To circumvent this problem we suggest applying the Robinson

and Yajima (2002) test for equality of the memory parameters to get the correct dimension of

the limiting distribution. ♢

4.2 The Double Maximum Test

The second test statistic we propose considers the null hypothesis of no breaks against the

alternative of m breaks, 1 ≤ m ≤ M, for some upper bound M , i.e.,

H′
0 : K = 0 vs H′

1 : 1 ≤ K ≤ M.

Following Bai and Perron (1998), we consider the double maximum test statistic,

UDmaxLRT (m, pb, nbd, nbo, ϵ) = max
1≤m≤M

sup LRT (m, pb, nbd, nbo, ϵ). (7)

The asymptotic distribution for this test can be obtained in the setting of Theorem 2, and the

following Theorem can be provided.
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Theorem 3. Under the assumptions of Theorem 2 it follows that,

UDmaxLRT (m, pb, nbd, nbo, ϵ) ⇒ max
1≤m≤M

sup
(λ1,...,λm)∈Λϵ

m∑
j=1

LRj(λ, d, pb, n
∗
b).

An important property of the UDmaxLRT test is that it enjoys Pitman efficiency. This

follows directly by noting that the tests are likelihood-ratio type tests and applying the usual

Taylor expansion argument to derive consistency of likelihood-ratio tests also delivers the result

in our set-up.

4.3 The Breaks Determination Approach

In this section we introduce an iterative method to determine the unknown number of breaks

in a multivariate system of long memory time series. It is based on repeated application of

the UDmaxLRT test in (7). The method requires fixing in advance an upper bound, M , on

the number of breaks. For convenience of notation we define the novel residual based iterative

procedure as REBIT.

Algorithm 1 (The REBIT algorithm).

(i) Set m = 0.

(ii) Estimate m breaks in the original system of time series yt and save the residuals.

(iii) Estimate the memory of the process and conduct the UDmaxLRT test with H0 : l = 0 vs.

H1 : 1 ≤ l ≤ M −m on the residuals.

(iv) :

(iv.a) If the test rejects the null hypothesis and m < (M − 1) then set m = m + 1 and

reiterate from (ii).

(iv.b) If the test cannot reject the null hypothesis then the detected number of breaks is m.

Furthermore, if m = M − 1 then the number of breaks is greater or equal to the

previously chosen upper bound M .

(v) The approach ends when the test can either not reject the null hypothesis or the user chosen

upper bound is reached - number of detected breaks is m.

Remark 3. The supLRT is not applicable in the suggested algorithm since a true break number

k, such that k ̸= 0 or k ̸= m, is neither covered by the null nor by the alternative hypotheses. ♢
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Estimation of the break dates in step (ii) is always performed on the original time series.

That is, the residuals are always estimated from a global optimization. Hence, the estimated

break dates from different iterations do not depend on each other. Therefore, our procedure

avoids the usually problematic situation of using residuals of residuals. From Lemma 1 we thus

obtain consistency of our break point estimates in each step. The break point estimates in

underspecified models are consistent, as shown by Bai (1997a) and Bai and Perron (1998) for

breaks in the mean. By similar methods one can show that our procedure estimates some true

break points even if the number of true break points is underspecified.

This iterative procedure avoids splitting the sample, as suggested, for example, in Bai (1997b),

which is not possible under long memory and allows us to use the limiting results in Theorems

1, 2 and 3 which are derived under long-range dependence. The following Theorem states that

our procedure has a hit rate of (1 − α), where α is the nominal significance level of the break

point test in Theorem 2.2

Theorem 4. Let α be the nominal significance level of the break point test in Theorem 3. Under

Assumptions 1-11, as T → ∞, the asymptotic hit rate of the REBIT procedure is (1− α).

Remark 4. The hit rate can be made converging to one by choosing the critical value of the

break point test to be sample size dependent α/T . However, this is not considered here as the

sample size is fixed in practice. ♢

Remark 5. All the limiting distributions in this section and also those in the next sections

depend on the underlying memory parameter d which is usually unknown in practice. As, to

the best of our knowledge, there is no
√
T -consistent estimator for d available if series have

structural changes, we use the following approach to make our procedure feasible in practice. The

memory parameter is always estimated in the residuals of the test regression. As the break dates

can be estimated consistently without knowledge of the memory parameter we start by estimating

the break dates first. In a second step we estimate the regression parameters segment wise and

compute the residuals which under the null hypothesis do not contain any structural breaks. Here,

the memory parameter can be
√
T -consistently estimated by Maximum Likelihood. ♢

2The hit rate gives the proportion of correctly specified number of breaks in the system.
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5 Stochastic Regressors

In what follows we relax the assumption of deterministic regressors to allow for stochastic re-

gressors including the case of fractional cointegration. Consider, as in (2), the linear regression

model,

yt = x
′
tβj + ut, j = 1, ...,m+ 1, (8)

where xt =
[
(I ⊗ z

′
t)S
]′

, is as in Section 4, but where now xt can also be fractionally integrated

of order dx, with 1/2 < dx ≤ 1. For the error term ut we assume that du < dx, which implies

fractional cointegration. The set-up includes as a special case the I(1)− I(0) cointegration case,

if dx = 1 and du = 0. We do not restrict the memory parameters to be equal across the individual

time series.

In addition to Assumptions 1 - 12 we need to impose the following assumptions:

Assumption 13. xt is I(dx) with 1/2 < dx ≤ 1.

Assumption 14. The sequences εt from Assumption 4 and xt are independent, that is,

E
(
[x′

tεt][x
′
tεt]

′) = ΩεΩx,

where E(εtε
′
t) = Ωε and E(xtx

′
t) = Ωx

In addition we need to strengthen Assumption 6 as, in the case of fractional cointegration,

the breaks in the cointegrating regressors would dominate breaks in the variance of the error

term.

Assumption 15. The magnitudes of the shifts satisfy β0
T,j+1 − β0

T,j = νTT
−dx/2c1j and

Σ0
j+1,T − Σ0

j,T = νTc2j , where (c1j , c2j) ̸= 0 are vectors of constants which are independent

of T . Moreover, νT is either a positive number independent of T or a sequence of positive

numbers that satisfy νT → 0 and T 1/2−duνT /(log T )
2 → ∞.

Our assumptions allow for a very general setting of fractional cointegration. We rule out

endogeneity by Assumption 14. The assumptions on the breaks and the break dates remain

the same as for the deterministic regressors case discussed in the previous section. Moreover,

although a combination of stochastic and deterministic regressors, such as linear trends, could

also be considered, for the sake of clarity of the representation, this will be omitted here.
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With these assumptions we can state that the consistency of the break point estimator re-

mains unchanged with the same rate of convergence as in the case of deterministic regressors.

Specifically, the following Lemma can be stated.

Lemma 3. Under Assumptions 13 to 15, Lemmas 1 and 2 still hold for model (8) with a new

convergence rate for the regression parameters, T dx−du(β̂j−β0
j ) for dx+du > 1 and T 2dx−1(β̂j−

β0
j ) for dx + du ≤ 1. In addition, Theorem 1 still holds.

Remark 6. Note that the limiting distribution of the break dates estimator in the case of stochas-

tic regressors is no longer Gaussian as it contains the limit of sums of the regressors and the

error terms. ♢

As now stochastic regressors are considered, the limiting distribution of the test changes and

becomes non-Gaussian. Specifically, define the process,

ΞQu =
1

Γ(du)

∫ 1

0
(1− s)du−1

∫ r

0
Q(s)dW (s)ds,

where W (s) denotes a standard Brownian motion and Q(s) is a fractional Brownian motion with

parameter 1−dx as defined in Assumption 13. For the case when dx+du > 1 we use the limiting

result, T dx−du
∑T

t=1 xtut
d→ ΞQu and when dx + du ≤ 1, T 2dx−1

∑T
t=1 xtut

d→ ΞQu.

Theorem 5. Under Assumptions 4, 7, 8 and 13 to 15 with the supLRT (m, pb, nbd, nbo, ϵ) test

(adopting the notation from the previous section), constructed for an alternative hypothesis H1

in the class of models described in the previous Section, it follows that:

i)
1

T 2du
supLRT (m, pb, nbd, nbo, ϵ) ⇒ sup

(λ1,...,λm)∈Λϵ

m∑
j=1

LRj(λ, d, pb, n
∗
b),

with

LRj(λ, d, pb, n
∗
b) =

∥λjΞ
∗
d,pb

(λj+1)− λj+1Ξ
∗
d,pb

(λj)∥2

(λj+1 − λj)λjλj+1

+
1

2

(
λjW

∗
d,n∗

b
(λj+1)− λj+1W

∗
d,n∗

b
(λj)

)′
HΩH ′

×
(
λjW

∗
d,n∗

b
(λj+1)− λj+1W

∗
d,n∗

b
(λj)

)/
((λj+1 − λj)λjλj+1),

where λ = (λ1, ..., λm) and λm+1 = 1. The vectors Ξ∗
d,pb

(·) and W ∗
d,n∗

b
(·) are of dimensions

pb and n∗
b = (nbd + 2nbo), respectively.
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ii) The limiting distribution of the UDmaxLRT test in Theorem 3 changes accordingly.

iii) The REBIT procedure and Theorem 4 hold unchanged.

6 Simulation results

In what follows we conduct a Monte Carlo simulation exercise to analyse the finite sample prop-

erties of the break point estimator and of our proposed REBIT procedure. The data generation

process is the bivariate model,

y1t = x1tβ1j + u1t, (9)

y2t = x2tβ2j + u2t, j = 1, ...,m+ 1, (10)

with ut = (u1t, u2t)
′ a fractionally integrated white noise process, xt = (x1t, x2t)

′ a fractionally

integrated process, and βij , i = 1, 2 the cointegration parameter in regime j. The vector of

long memory parameters of the error term is Du = (d1u, d2u) = {(0.2, 0.2), (0.4, 0.2)} and of the

stochastic regressors Dx = (d1x, d2x) = {(0.6, 0.4), (0.6, 0.6), (0.6, 0.8)}. The simulation study

focuses on breaks in the fractional cointegration relation in a multivariate setting. To estimate

the elements of Du, we apply the MLE approach of Beran (1995) to each series individually

and apply the testing procedure of Robinson and Yajima (2002) to check for the equality of the

memory parameters. The error term is modeled as ut ∼ N(0,Σj). All results are based on a 5%

nominal significance level, ϵ = 0.05, meaning that the break fraction is in the interval [0.05, 0.95],

T = 500 and 1, 000 Monte Carlo replications.

We choose m ∈ {0, 1, 2, 3} breaks which are uniformly allocated to the two series such that

the distance between the breaks across both series is the same. Furthermore, breaks are not

constrained to occur simultaneously in the two time series. The break size is set as,

∆βij = κ, (11)

where κ is a finite constant.

6.1 Bias and MSE of the break date estimator

Tables 1 and 2 present the bias and mean squared error (MSE) of the break date estimator for

the stochastic regressor case, assuming that the total number of breaks is known. We observe

that as the break size (κ) increases, both bias and MSE generally decrease, meaning that larger

breaks are easier to detect. However, this does not always hold, particularly in cases with high
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persistence in the regressors and errors (d values closer to 1) or when the errors are correlated

(ρ = 0.5). This introduces estimation challenges, leading to higher bias and MSE. Additionally,

larger sample sizes improve estimation accuracy, as seen in the consistently lower bias and MSE

values when comparing results for κ = 4 and κ = 8.

Moreover, we can also see that estimating multiple breaks is more difficult than detecting

a single break, especially when persistence is high. When errors are correlated, the estimator’s

accuracy decreases, leading to less precise break date identification. In some cases, bias is negative

(indicating breaks are estimated too early), while in others, it is positive (suggesting breaks

are identified too late). This variation shows how persistence and correlation affect estimation

performance.

Number of Breaks
1 2 3

d1x d2x ρ / κ 4 8 4 8 4 8

d1u d2u

0.6 0.4 0.0 0.073 -0.052 -0.097 0.010 0.132 0.005
0.4 0.2 0.5 0.034 0.011 -0.102 -0.014 0.146 0.005

0.6 0.6 0.0 0.215 0.067 0.857 -0.189 0.170 -0.078
0.2 0.2 0.5 -0.741 0.095 0.391 -0.041 0.550 0.099

0.6 0.6 0.0 0.050 -0.017 -0.101 -0.029 0.022 0.002
0.4 0.2 0.5 -0.112 0.039 0.083 0.027 -0.060 -0.024

0.6 0.8 0.0 0.026 -0.019 0.026 0.009 0.082 -0.005
0.4 0.2 0.5 -0.002 0.028 -0.085 -0.005 0.028 0.013

Table 1: Bias of the break date estimator.
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Number of Breaks
1 2 3

d1x d2x ρ / κ 4 8 4 8 4 8

d1u d2u

0.6 0.4 0.0 0.0053 0.0027 0.0106 0.0001 0.0207 0.0004
0.4 0.2 0.5 0.0340 0.0001 0.0106 0.0051 0.0254 0.0002

0.6 0.6 0.0 0.0462 0.0045 0.7343 0.0403 0.0506 0.0193
0.2 0.2 0.5 0.5491 0.0090 0.1836 0.0021 0.3628 0.0299

0.6 0.6 0.0 0.0025 0.0003 0.0102 0.0023 0.0005 0.0003
0.4 0.2 0.5 0.0125 0.0015 0.0167 0.0015 0.0114 0.0007

0.6 0.8 0.0 0.0007 0.0004 0.0015 0.0002 0.0071 0.0001
0.4 0.2 0.5 0.0000 0.0009 0.0105 0.0001 0.0009 0.0009

Table 2: MSE of the break date estimator.

6.2 The hit rate of the REBIT approach

In order to evaluate the hit rate of the novel REBIT approach introduced in this paper, the

necessary asymptotic critical values are simulated for different combinations of D = (d1,d2) by

approximating the stochastic integrals by partial sums. They are based on 10,000 Monte Carlo

replications with 1, 000 increments per path of the fractional Brownian motion.

Figure 1 reports the hit ratio, i.e., how often our procedure detects the true number of breaks

when β is breaking, depending on κ in a sample of size T = 500. This Figure consists of six

panels, illustrating the hit rate of our test for determining break dates under different parameter

configurations. κ corresponds to the magnitude of the break, and m represents the number of

breaks considered in the model.

In general, across all panels, the hit rate increases with κ, reflecting that larger break mag-

nitudes are easier to detect. We observe that for the majority of cases when κ = 0, i.e. in

the case of no breaks (m = 0) in the series, we obtain a hit rate smaller or equal to 5% (our

nominal significance level). Although, the rejection frequencies under the null hypothesis suggest

that our test is conservative, we also observe that for large values of κ, the hit rate approaches

1− α = 0.95, suggesting a highly effective test.

We can also observe that the total number of breaks, m, plays a crucial role in the test’s

performance. When fewer breaks (m = 1) are present in the series the test generally achieves
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higher hit rates across all scenarios, as they are simpler and involve fewer parameters to estimate.

As m increases, the complexity of the model grows, making it harder to detect breaks precisely,

particularly for small values of κ.

Panels (a) and (b): These panels correspond to the configuration (d1x, d2x) = (0.6, 0.6),

(d1u, d2u) = (0.2, 0.2), and ρ = 0 and ρ = 5, respectively, where ρ represents the correlation

between errors. In Panel (a) the test achieves high hit rates as κ increases, with hit rates close

to 0.95 for κ ≥ 3. The performance gap between m = 1, m = 2, and m = 3 is more noticeable

for small κ, indicating higher sensitivity to simple models when break magnitudes are small. In

Panel (b) the hit rate is slightly reduced compared to (a), especially for small κ, due to the

difficulty of isolating the break effect in the presence of correlated errors. However, as κ grows,

the hit rate converges to 0.95, and the difference between the m = 1, m = 2, and m = 3 cases

diminishes.

Panels (c) and (d): Here, the persistence parameters are (d1x, d2x) = (0.6, 0.4) and (d1u, d2u) =

(0.4, 0.2), with ρ = 0 and ρ = 0.5, respectively. In these panels heterogeneity in persistence for

both the regressors and the errors is introduced. In Panel (c) the hit rate is slightly lower for

small κ compared to Panel (a), reflecting the increased complexity of the test due to the het-

erogeneous persistence. Nevertheless, for κ ≥ 3, the test performs well, with hit rate close to

0.95. Panel (d) represents the most challenging scenario, with the slowest increase in the hit

rate as κ grows. The hit rate is noticeably lower for m = 2 and m = 3 when κ is small, and the

convergence to 0.95 is more gradual compared to earlier panels.

Panels (e) and (f): Finally, in Panels (e) and (f) we consider the configuration, (d1x, d2x) =

(0.6, 0.8), (d1u, d2u) = (0.4, 0.2), and ρ = 0 and ρ = 0.5, respectively. In the case of uncorrelated

errors (ρ = 0) the higher persistence of the second regressor (d2x = 0.8) makes the break easier

to detect for large κ, and the hit rate increases rapidly. For small κ, the hit rate is slightly lower

for m = 2 and m = 3 compared to m = 1, but this gap diminishes as κ increases. However,

the combination of high persistence and correlated errors leads to reduced hit rates for small κ.

Nevertheless, the hit rate improves significantly as κ grows, with convergence to 0.95 occurring

for all m values.
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(b) (d1x, d2x) = (0.6, 0.6),
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(c) (d1x, d2x) = (0.6, 0.4),
(d1u, d2u) = (0.4, 0.2), and ρ = 0
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(d) (d1x, d2x) = (0.6, 0.4),
(d1u, d2u) = (0.2, 0.4), and ρ = 0.5
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(e) (d1x, d2x) = (0.6, 0.8),
(d1u, d2u) = (0.4, 0.2), and ρ = 0
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(f) (d1x, d2x) = (0.6, 0.8),
(d1u, d2u) = (0.4, 0.2), and ρ = 0.5

Figure 1: Hit ratio of our REBIT procedure for different orders of integration, d1x and d2x, for
the stochastic regressors and d1u and d2u for the error terms, where the true number of breaks
is m and the breaks are occurring in the cointegration relation. κ on the x-axis is related to the
break size, which increases as κ increases. The value on the y-axis provides the hit ratio of our
test, i.e. the fraction the true number of breaks is detected. The memory parameter is estimated
based on the approach of Beran (1995), ρ is the correlation of the series, and the sample size is
T = 500. The dashed line indicates the 5% nominal significance level.
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7 Empirical Applications

7.1 Inflation rates

Inflation is one of the key variables in macroeconomics since it is assumed to determine unemploy-

ment and national output. Over the past years numerous empirical studies found that inflation

rates possess significant autocorrelation at large lags and a pole in the periodogram at Fourier

frequencies local to zero (e.g. Hassler and Wolters (1995) or Kumar and Okimoto (2007)). This

can be seen as an indication that inflation rates follow a long memory process, but similar time

series features can also be generated by short memory processes that are contaminated with

breaks, which in the literature is referred to as spurious long memory (see, e.g., Diebold and

Inoue (2001), Granger and Hyung (2004), and Mikosch and Stărică (2004)).

Standard estimation procedures of the long memory parameter are biased upwards in the

presence of breaks, and standard testing procedures for shifts detect too many breaks in a long

memory time series. The literature is therefore unclear about the nature of the underlying process

of inflation time series. For instance, Hassler and Wolters (1995) and Baum et al. (1999) argue

that ARFIMA models can describe inflation rates well; Bos et al. (1999) and Morana (2002) find

evidence of structural breaks in international inflation rates; and Gadea et al. (2004) show that

the memory of the series is reduced when structural changes are allowed for.

Many recent contributions favor a mixture of long memory models and structural breaks

(Kumar and Okimoto (2007)). However, being able to determine whether the series follow a

pure long memory process, a short memory process with breaks or a mixture of long memory

and breaks is of major importance for policy makers, since if inflation rates are persistent,

monetary policy actions need more time to unfold their effect, which can be more costly. The

testing procedure we propose in this paper is therefore of importance as it allows to detect

the true number of breaks in multivariate time series that are allowed to possess long memory

dynamics. The approach can therefore be used to examine the properties of the underlying

process of inflation rates.

Considering monthly CPI data (Pt), from January 1970 to May 2019, from Germany and
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France, available from the OECD3 we compute monthly inflation rates (πt) as,

πt = 100(logPt − logPt−1).

As a result we have 592 observations that are further seasonally adjusted by applying X-

13ARIMA-SEATS of Sax and Eddelbuettel (2018) to remove a yearly seasonality present in the

german inflation series and a half-yearly seasonality in the french series. Figure 2 illustrates

the bivariate time series along with the detected break points and partitions. We find that the

nature of the break points resulting into spurious long memory are of the level shift kind.
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Figure 2: Monthly inflation rates for France and Germany from 1970 to 2019. The dashed red
vertical lines refer to the mean shifts detected by our procedure. The solid bold red horizontal
lines refer to the estimated means in each partition.

Table 3 provides further results of our testing procedure, as well as, the estimates of the

memory parameter of the raw and the breaks corrected inflation series.

3http://data.oecd.org/price/inflation-cpi.htm.
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Panel A: Persistence of Inflation Series

raw series breaks corrected series
dGSE MLWS dtGPH dGSE MLWS

France 0.567 2.526*** 0.242 0.275 0.7813
Germany 0.381 0.214 0.283

Panel B: Number and Dates of Breaks

# breaks break dates

REBIT 3 03/73, 04/85, 02/93

Table 3: Panel A presents results regarding the persistence of the system. On the left hand side of
the table the memory of the raw inflation series is estimated with the multivariate local Whittle
estimator (GSE) of Shimotsu (2007) with a bandwidth of b = ⌊T 2/3⌋, and the trimmed log-
periodogram estimator (tGPH) of McCloskey and Perron (2013), which is robust against shifts,
with b = ⌊T 0.8⌋ and the constant that determines the trimming set at ϵ = 0.05. Furthermore,
results of the multivariate test against spurious long memory (MLWS) by Sibbertsen et al. (2018)
are given with b = ⌊T 2/3⌋ and trimming parameter ϵ = 0.02. Here, ***, **, * denote significance
at 1%, 5% and 10%, respectively. The GSE estimates of the memory on the right hand side of
the table as well as the result of the MLWS test are given for the break corrected time series. The
break correction was executed with regard to the break dates detected by our REBIT procedure.

Panel B presents the number of breaks and corresponding break dates detected by our REBIT
procedure.

The left hand side of Panel A of Table 3 shows results regarding the persistence of the

inflation series. In line with earlier empirical results (e.g., Hassler and Wolters (1995) and Bos

et al. (1999)) the multivariate local Whittle estimator (GSE) of Shimotsu (2007) estimates high

values of d for the raw data, such that both series seem to be highly persistent. However, there

is evidence that the time series are contaminated by breaks, which lead to an upward bias of the

memory parameter estimates of the GSE (Mikosch and Stărică (2004)). First, the multivariate

test against spurious long memory (MLWS) by Sibbertsen et al. (2018) rejects the null hypothesis

of pure long memory processes at the 1% significance level. Second, applying the (univariate)

trimmed log-periodogram estimator (tGPH) of McCloskey and Perron (2013) on both inflation

series shows that the memory of these series decreases. Therefore, we apply our procedure that

can consistently detect and estimate multiple shifts in the bivariate system of inflation series (see

results in Panel B of Table 3).

We observe that the first structural break detected is in the french time series in March 1973,

which is a few month before the first oil crisis. We further note that the mean in the second
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partition of the inflation series of France shows a significant increase. The second structural

break is detected in both time series simultaneously in April 1985 which may be connected to

the 1980s oil glut. We observe that the mean of both inflation series strongly decreases after the

break in this partition of the series. It should be noted that the break point estimator is not

constrained to estimate only simultaneous occurring breaks. The last break detected occurs in

the german inflation rate series in February 1993. The break results in another small reduction

of the mean of the process. This break is likely caused by a severe recession that occurred in

Germany during this time.

The other two procedures we also consider are the SEQ(l+1|l) test of Qu and Perron (2007)

and the F(l + 1|l) test of Bai and Perron (1998). The F(l + 1|l) test detects 12 breaks in the

inflation series, and the SEQ(l + 1|l) test more than 19. Some of the detected break dates are

similar to the ones found by the REBIT test, but the other two tests find more breaks especially

at the end of the sample. This can be reasoned by the fact that both procedures are not robust

under long memory. The robust tGPH estimator by McCloskey and Perron (2013) indicates

that there is still memory left apart from the upward bias in standard long memory estimation

methods induced by breaks.

To further investigate whether the REBIT procedure detects the relevant breaks, we examine

the break corrected inflation series. The results of the GSE estimator and MLWS test can

be seen on the right hand side of Panel A of Table 3. The estimated memory by the GSE

strongly decreases to a value around 0.28 which is similar to the tGPH estimate of the raw

series. Furthermore, the MLWS test is no longer significant suggesting that there is no evidence

of spurious long memory. Therefore, we conclude that our procedure detects all relevant breaks

of the bivariate inflation system.

7.2 EMU Government Bond Markets

The second empirical analysis is based on daily observations of 10-year-to-maturity government

bonds of eight EMU countries from 01.01.2006 to 06.06.2024, including a total of 4809 obser-

vations per country. The analysed countries are Portugal, Ireland, Belgium, Austria, Finland,

Netherlands, France, and Germany. The data is obtained from Datastream.

In general, since the introduction of the euro the market is seen as an integrated market (see,

among others, Hartmann et al. (2003) and Abad et al. (2010)). This is reasoned by a reduction of

the trading barriers, for example, by eliminating exchange-rate risk and increasing homogeneity
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in the market itself. All in all, the reduction of trading barriers and transaction costs, and an

increase in liquidity leads to a market which is said to co-move in an equilibrium state, so that

a fully integrated market is not affected by country specific risk anymore.

One way of modelling co-movement or market integration can be done in terms of (fractional)

cointegration, as introduced by Engle and Granger (1987) and Johansen (1988), in order to

express the long-term equilibrium relationship given in this market. However, the standard

(fractional) cointegration paradigm assumes a constant relationship between the non-stationary

time series. This might be a rather restrictive assumption especially in the case of the EMU

government bonds. As seen in Figure 3 the time series are moving relatively close to each other

which may be seen as evidence of markets convergence. However, this behaviour changes as

some of the yields start to drift apart from the beginning of the financial crisis in 2008 and

remain diverged as a consequence of the European sovereign debt crisis starting shortly after

the financial crisis in 2009. This raises doubts about the integration of the European bond

market. The discussion about integration or disintegration of the European bond market led

to a new strand of literature addressing time variation in the integration of the bond market,

as it is broadly accepted in the literature that the introduction of the euro led to an almost

fully integrated bond market. However, the crises introduced some kind of structural change

or temporary shock in the market (see e.g. Christiansen (2014), Babeckỳ et al. (2017), Sehgal

et al. (2017), Qin et al. (2023), and Rodrigues et al. (2024)).
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Figure 3: Yields of the EMU government bonds from 2006 to 2024. The black vertical lines refer
to the estimated break points our procedure detected.
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Based on recent literature we suggest to test for possible breaks in the (fractional) cointe-

gration relationship in the EMU bond market. Therefore, we first examine whether there is a

fractional cointgeration relationship in the system. To do so we investigate, by using the ADF

test (with constant and trend) and the KPSS test the order of integration of the single series.

The ADF test does not reject the null of a unit root and the KPSS test rejects stationarity for

all cases. In order to proceed with the analysis of possible (fractional) cointegration we apply

different tests. First we test for equality of the estimated memory parameters in the system

using the test by Robinson and Yajima (2002) and Nielsen and Shimotsu (2007). All results are

presented in Panel A of Table 4. We are not able to reject the null of equal memory parameters.

Next, we test for fractional cointegration for the time series all together as well as for the

single time series in a bivariate fashion to ensure overall fractional cointgeration. We apply the

tests of Chen and Hurvich (2006), Robinson (2008), and Nielsen (2010) where the null of no

fractional cointegration can be rejected for all the testing procedures considered.

This result seems to be in line with a general long-run equilibrium and in favor of the integration

of the EMU bond markets. However, based on recent findings and assumptions regarding the

time-varying behaviour of market integration in Europe, this framework may not be flexibel

enough. Therefore, we apply our REBIT procedure to check whether recent crises might have

caused some changes in the long-run equilibrium relationship.

The number of breaks and the respective break dates can be found in Panel B of Table 4. In

general, our procedure is able to detect three breaks in total in the system. The system is set up

in such a way that we investigate fractional cointegration between Germany and the other EMU

countries as our model set-up requires an explanatory variable. The first two break dates are

close to breaks reported in the literature. Babeckỳ et al. (2017) find periods of interruption of

the financial integration in these segments and Rodrigues et al. (2024) confirms this by finding

segments where the bond market is not fractionally cointegrated before and after the sovereign

debt crisis.

We contribute to these findings in that we can estimate the long-run coefficients for the

single segments. Panel C of Table 4 includes the estimates of the long-run relationship between

Germany and the single time series. In the first segment we receive for all the countries a β

estimate which is close to one. That indicates and supports the assumption of a very close

co-moving or fully integrated market, where the long-run coefficient is indicating an almost one

to one relationship. Applying the aforementioned fractional cointegration tests we can reject
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the null of no fractional cointegration for all cases. The second segment and the first estimated

break point coincides with the financial crisis and covers the period over the sovereign debt crisis

as well. The β estimates over this segment show a clear change in the long-run coefficients

compared to the first segment and show a huge change in the long-run coefficient for Portugal

and Ireland during the eurozone crisis. Although, not all countries where severely influenced by

the debt crisis the change of the estimates of the long-run coefficients show how the countries

were all together influenced by the crisis. This supports the idea of a fully integrated market

as the countries are affected as a whole. Interestingly, when applying the testing procedures

to detect whether the crises just changed the long-run coefficient or lead to an interruption of

the franctional cointegration relationship we are again able to reject the null of no fractional

cointegration for all the applied testing procedures. The second break coincides with the end of

the European sovereign debt crisis where Portugal and Ireland improved their financial stability

and managed to exit their bailout programs in mid 2014, e.g. in the third segment our procedure

detected.

The analyzed time series in Babeckỳ et al. (2017) and Rodrigues et al. (2024) do not exceed

2017 while we are able to find another break in the long-run equilibrium after this. The break is

at the beginning of 2019 and could coincide with the ongoing debate about the Brexit and the

Irish backstop. In February the president of the European commission claimed to support Ireland

in case of a no-deal Brexit. The respective β estimates for the last segment show and support

the overall picture we see in Figure 3 that the market starts to co-move again although not as

close as in the first segment where the long-run coefficients where close to one for all investigated

time series. Here, the majority of estimates are around 1.2. All fractional cointegration tests

reject the null of no fractional cointegration in this period.

In general, the EMU bond market seems to be integrated in the long-run, but this long-run

relationship is dynamic and changing in time.
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Panel A: Persistence of the Bond Series

raw series
ADF KPSS d̂ T0

PT 0.76 0.01 0.96

0.40

IE 0.79 0.01 0.99
BE 0.98 0.01 0.96
AT 0.99 0.01 0.99
FI 0.99 0.01 1.01
NL 0.99 0.01 0.99
FR 0.99 0.01 0.98
GER 0.99 0.01 0.98

Panel B: Number and Dates of Breaks

# breaks break dates

REBIT 3 27.10.08, 20.06.13, 18.02.19

Panel C: Long-run Coefficient Estimates

2006 - 2008 2008 - 2013 2013 - 2019 2019

β̂PT 1.0612 2.5053 3.5959 1.2800
β̂IE 1.0380 2.3719 2.0229 1.1536
β̂BE 1.0383 1.3549 1.4560 1.2350
β̂AT 1.0282 1.2230 1.2505 1.2305
β̂FI 1.0230 1.1247 1.1827 1.2094
β̂NL 1.0210 1.1276 1.2057 1.1237
β̂FR 1.0223 1.1888 1.3939 1.1965

Table 4: Panel A includes results regarding the persistence of the time series. The order of
integration, d, of the time series is estimated by the univariate local Whittle estimator of Robin-
son (1995) using a bandwith of b = ⌊T 2/3⌋ applied to the each time series individually. This is
necessary in order to prevent inconsistency of the multivariate local Whittle estimator proposed
by Shimotsu (2007) in the case of (fractional) cointegration. The remaining columns include
the p-values of the ADF-, KPSS-test and a testing procedure proposed by Robinson and Ya-
jima (2002) and Nielsen and Shimotsu (2007) to test the equality of the memory parameters in
the single time series, T0. Panel B includes the number of breaks and the corresponding break
dates detected by our procedure. Panel C includes the estimates of the long-run coefficient for
the estimated segments.
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8 Conclusions

This paper introduces, to the best of our knowledge, the first procedure for testing for multiple

breaks in a multivariate long memory framework covering the case of fractional cointegration.

We embed our procedure into a multivariate system of long memory time series allowing for

breaks in the regression parameters as well as in the covariance matrix. The breaks are allowed

to appear contemporaneously or at different times. Our assumptions on the breaks are fairly

general.

The procedure consists of iterative testing for m structural breaks with m increasing in each

step. It therefore avoids splitting the sample into segments as in Bai (1997b) and others, which

is not possible under long memory. Our test and break point estimator is Likelihood-ratio based.

The consistency and limiting distributions of both procedures are derived. Interestingly, the

limiting distribution of the test depends only on the maximum of all memory parameters and on

the number of series having this maximum memory.

A Monte Carlo study demonstrates the good finite sample properties of our procedure and an

application to inflation rates of France and Germany and EMU government bonds its usefulness

in practice.
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Babeckỳ, Jan, Luboš Komárek, and Zlatuše Komárková (2017). “Financial integration at times

of crisis and recovery”. Economic Imbalances and Institutional Changes to the Euro and the

European Union. Vol. 18. Emerald Publishing Limited, pp. 173–191.

Bai, Jushan (1997a). “Estimating multiple breaks one at a time”. Econometric Theory 13(3),

pp. 315–352.

Bai, Jushan (1997b). “Estimation of a change point in multiple regression models”. Review of

Economics and Statistics 79(4), pp. 551–563.

Bai, Jushan (2000). “Vector Autoregressive Models with Structural Changes in Regression Coeffi-

cients and in Variance-Covariance Matrices”. Annals of Economics and Finance 1(2), pp. 303–

339.

Bai, Jushan, Robin L Lumsdaine, and James H Stock (1998). “Testing for and dating common

breaks in multivariate time series”. The Review of Economic Studies 65(3), pp. 395–432.

Bai, Jushan and Pierre Perron (1998). “Estimating and testing linear models with multiple

structural changes”. Econometrica, pp. 47–78.

Baum, Christopher F, John T Barkoulas, and Mustafa Caglayan (1999). “Persistence in interna-

tional inflation rates”. Southern Economic Journal, pp. 900–913.

Beran, Jan (1995). “Maximum likelihood estimation of the differencing parameter for invertible

short and long memory autoregressive integrated moving average models”. Journal of the

Royal Statistical Society: Series B (Methodological) 57(4), pp. 659–672.

Betken, Annika (2016). “Testing for Change-Points in Long-Range Dependent Time Series by

Means of a Self-Normalized Wilcoxon Test”. Journal of Time Series Analysis 37(6), pp. 785–

809.

Bos, Charles S, Philip Hans Franses, and Marius Ooms (1999). “Long memory and level shifts:

Re-analyzing inflation rates”. Empirical Economics 24(3), pp. 427–449.

Casini, Alessandro and Pierre Perron (2019). “Structural Breaks in Time Series”. Oxford Research

Encyclopedia of Economics and Finance. doi: 10.1093/acrefore/9780190625979.013.179.

Chen, Willa W and Clifford M Hurvich (2006). “Semiparametric estimation of fractional cointe-

grating subspaces”. The Annals of Statistics, pp. 2939–2979.

Christiansen, Charlotte (2014). “Integration of European bond markets”. Journal of Banking &

Finance 42, pp. 191–198.

Chung, Ching-Fan (2002). “Sample means, sample autocovariances, and linear regression of sta-

tionary multivariate long memory processes”. Econometric Theory 18(1), pp. 51–78.

- 32 -

https://doi.org/10.1093/acrefore/9780190625979.013.179


Davidson, James and Robert M. de Jong (2000). “The functional central limit theorem and weak

convergence to stochastic integrals II: Fractionally Integrated Processes”. Econometric Theory

16(5), pp. 643–666.

Dehling, Herold, Aeneas Rooch, and Murad S Taqqu (2013). “Non-Parametric Change-Point

Tests for Long-Range Dependent Data”. Scandinavian Journal of Statistics 40(1), pp. 153–

173.

Diebold, Francis X and Atsushi Inoue (2001). “Long memory and regime switching”. Journal of

Econometrics 105(1), pp. 131–159.

Engle, Robert F and Clive WJ Granger (1987). “Co-integration and error correction: represen-

tation, estimation, and testing”. Econometrica, pp. 251–276.

Gadea, Marıa Dolores, Marcela Sabaté, and José Marıa Serrano (2004). “Structural breaks and

their trace in the memory: Inflation rate series in the long-run”. Journal of International

Financial Markets, Institutions and Money 14(2), pp. 117–134.

Giraitis, Liudas, Hira L Koul, and Donatas Surgailis (2012). Large sample inference for long

memory processes. World Scientific Publishing Company.

Granger, Clive WJ and Namwon Hyung (2004). “Occasional structural breaks and long memory

with an application to the S&P 500 absolute stock returns”. Journal of Empirical Finance

11(3), pp. 399–421.

Hall, Alastair R., Denise R. Osborn, and Nikolaos Sakkas (2013). “Inference on Structural Breaks

using Information Criteria”. The Manchester School 81(S3), pp. 54–81.

Hartmann, Philipp, Angela Maddaloni, and Simone Manganelli (2003). “The Euro-area financial

system: Structure, integration, and policy initiatives”. Oxford Review of Economic Policy

19(1), pp. 180–213.

Hassler, Uwe and Barbara Meller (2014). “Detecting multiple breaks in long memory the case of

U.S. inflation”. Empirical Economics 46(2), pp. 653–680.

Hassler, Uwe, Paulo M.M. Rodrigues, and Antonio Rubia (2014). “Persistence in the banking

industry: Fractional integration and breaks in memory”. Journal of Empirical Finance 29,

pp. 95–112.

Hassler, Uwe and Jürgen Wolters (1995). “Long memory in inflation rates: International evi-

dence”. Journal of Business & Economic Statistics 13(1), pp. 37–45.

- 33 -



Iacone, Fabrizio, Stephen J Leybourne, and Robert AM Taylor (2014). “A Fixed-B Test for a

Break in Level at an Unknown Time Under Fractional Integration”. Journal of Time Series

Analysis 35(1), pp. 40–54.

Johansen, Søren (1988). “Statistical analysis of cointegration vectors”. Journal of Economic Dy-

namics and Control 12(2-3), pp. 231–254.

Kechagias, Stefanos and Vladas Pipiras (2015). “Definitions and representations of multivariate

long-range dependent time series”. Journal of Time Series Analysis 36(1), pp. 1–25.

Kumar, Manmohan S and Tatsuyoshi Okimoto (2007). “Dynamics of persistence in international

inflation rates”. Journal of Money, Credit and Banking 39(6), pp. 1457–1479.

Lavielle, Marc and Eric Moulines (2000). “Least-squares Estimation of an Unknown Number of

Shifts in a Time Series”. Journal of Time Series Analysis 21(1), pp. 33–59.

Marinucci, D. and P.M. Robinson (1999). “Alternative forms of fractional Brownian motion”.

Journal of Statistical Planning and Inference 80(1-2), pp. 111–122.

Marinucci, D. and P.M. Robinson (2000). “Weak convergence of multivariate fractional processes”.

Stochastic Processes and Their Applications 86(1), pp. 103–120.

Martins, Luis F. and Paulo M.M. Rodrigues (2014). “Testing for persistence change in fraction-

ally integrated models: An application to world inflation rates”. Computational Statistics &

Data Analysis 76. CFEnetwork: The Annals of Computational and Financial Econometrics,

pp. 502–522.

McCloskey, Adam and Pierre Perron (2013). “Memory parameter estimation in the presence of

level shifts and deterministic trends”. Econometric Theory 29(6), pp. 1196–1237.

Mikosch, Thomas and Cătălin Stărică (2004). “Nonstationarities in financial time series, the

long-range dependence, and the IGARCH effects”. Review of Economics and Statistics 86(1),

pp. 378–390.

Morana, Claudio (2002). “Common persistent factors in inflation and excess nominal money

growth and a new measure of core inflation”. Studies in Nonlinear Dynamics & Econometrics

6(3).

Nielsen, Morten Ørregaard (2010). “Nonparametric cointegration analysis of fractional systems

with unknown integration orders”. Journal of Econometrics 155(2), pp. 170–187.

Nielsen, Morten Ørregaard and Katsumi Shimotsu (2007). “Determining the cointegrating rank

in nonstationary fractional systems by the exact local Whittle approach”. Journal of Econo-

metrics 141(2), pp. 574–596.

- 34 -



Perron, Pierre (2006). “Dealing with structural breaks”. Palgrave Handbook of Econometrics 1(2),

pp. 278–352.

Preuss, Philip, Ruprecht Puchstein, and Holger Dette (2015). “Detection of Multiple Structural

Breaks in Multivariate Time Series”. Journal of the American Statistical Association 110,

pp. 654–668.

Qin, Weiping, Sungjun Cho, and Stuart Hyde (2023). “Time-varying bond market integration

and the impact of financial crises”. International Review of Financial Analysis 90, p. 102909.

Qu, Zhongjun and Pierre Perron (2007). “Estimating and testing structural changes in multi-

variate regressions”. Econometrica 75(2), pp. 459–502.

Robinson, Peter (1995). “Gaussian semiparametric estimation of long range dependence”. The

Annals of statistics, pp. 1630–1661.

Robinson, Peter M. (2008). “Diagnostic testing for cointegration”. Journal of econometrics 143(1),

pp. 206–225.

Robinson, Peter Michael and Yoshihiro Yajima (2002). “Determination of cointegrating rank in

fractional systems”. Journal of Econometrics 106(2), pp. 217–241.

Rodrigues, Paulo MM, Philipp Sibbertsen, and Michelle Voges (2024). “The stability of gov-

ernment bond markets’ equilibrium and the interdependence of lending rates”. Empirical

Economics, pp. 1–36.

Sax, Christoph and Dirk Eddelbuettel (2018). “Seasonal adjustment by x-13arima-seats in r”.

Journal of Statistical Software 87, pp. 1–17.

Sehgal, Sanjay, Priyanshi Gupta, and Florent Deisting (2017). “Assessing time-varying stock

market integration in Economic and Monetary Union for normal and crisis periods”. The

European Journal of Finance 23(11), pp. 1025–1058.

Shao, Xiaofeng (2011). “A simple test of changes in mean in the possible presence of long-range

dependence”. Journal of Time Series Analysis 32(6), pp. 598–606.

Shimotsu, Katsumi (2007). “Gaussian semiparametric estimation of multivariate fractionally in-

tegrated processes”. Journal of Econometrics 137(2), pp. 277–310.

Sibbertsen, Philipp (2004). “Long memory versus structural breaks: An overview”. Statistical

Papers 45(4), pp. 465–515.

Sibbertsen, Philipp and Robinson Kruse (2009). “Testing for a break in persistence under long-

range dependencies”. Journal of Time Series Analysis 30, pp. 263–285.

- 35 -



Sibbertsen, Philipp, Christian Leschinski, and Marie Busch (2018). “A multivariate test against

spurious long memory”. Journal of Econometrics 203(1), pp. 33–49.

Sibbertsen, Philipp and Juliane Willert (2012). “Testing for a break in persistence under long-

range dependencies and mean shifts”. Statistical Papers 53, pp. 357–370.

Wang, Lihong (2008). “Change-in-mean problem for long memory time series models with appli-

cations”. Journal of Statistical Computation and Simulation 78(7), pp. 653–668.

Wenger, Kai and Christian Leschinski (2019). “Fixed-bandwidth CUSUM tests under long mem-

ory”. Econometrics and Statistics.

Wenger, Kai, Christian Leschinski, and Philipp Sibbertsen (2019). “Change-in-mean tests in long-

memory time series: a review of recent developments”. AStA Advances in Statistical Analysis

103(2), pp. 237–256.

Wenger, Kai and Vivien Less (2020). “A modified Wilcoxon test for change points in long-range

dependent time series”. Economics Letters 192, p. 109237.

Wingert, Simon, Mwasi Mboya, and Philipp Sibbertsen (2022). “Distinguishing between Breaks in

the Mean and Breaks in Persistence under Long Memory”. Economics Letters 193, p. 109338.

Wu, Wei Biao (2007). “Strong invariance principles for dependent random variables”. The Annals

of Probability 35(6), pp. 2294–2320.

Yamaguchi, Keiko (2011). “Estimating a change point in the long memory parameter”. Journal

of Time Series Analysis 32, pp. 304–314.

Yao, Yi-Ching (1988). “Estimating the number of change-points via Schwarz’ criterion”. Statistics

and Probability Letters 6, pp. 181–189.

- 36 -



On-Line Supplementary Appendix

to

“Testing for Multiple Structural Breaks in

Multivariate Long Memory Time Series"

by

Vivien Less, Paulo M. M. Rodrigues and Philipp Sibbertsen

- 37 -



A Technical Proofs

This section contains the proofs of Lemma 1 and Theorems 1 and 2. To prove these results we

require a generalized Hájek-Rényi inequality, a strong law of large numbers (SLLN) and a func-

tional central limit theorem (FCLT) that hold under our stated assumptions, and in particular

under long memory. We collect them in separate Lemmas in Section A.1. Afterwards, in Sec-

tion A.2, we show that under our set of Assumptions, the ten properties of the quasi-likelihood

considered in Bai et al. (1998), Bai (2000) and Qu and Perron (2007) are satisfied. We prove

consistency of the break point estimators next in Lemma A.1 and in Section A.4 we provide the

proof of the limiting distribution of our test statistic, i.e. Theorem 2.

In what follows, if not stated otherwise, d = du is considered.

A.1 Proof Generalised Hájek-Rényi Inequality, SLLN, FCLT

Lemma A.1 (Generalised Hájek-Rényi Inequality). Let ξ = (ξi)i≥1 be a sequence of mean zero

Rd-valued random vectors. Define Fk as an increasing σ-field generated by (ξi)i≥k. Consider

that (ξi)i≥1 satisfies Assumption 4 with x′
iui replaced by ξi. Then, there exists an L < ∞ such

that, for every δ > 0 and m > 0, P (supk≥m k−1∥
∑k

t=1 ξt∥ > δ) ≤ (L/δ2m2d−1), where d = dmax

is the largest memory parameter of the elements of the vector ξi.

Proof. In the following we define M i:j =
∑j

t=i ξt. We start by noting that,

Pr

(
max
k≥m

1

k
∥M1:k∥ > δ

)
≤

∞∑
p=0

Pr

(
max

2p≤k≤2p+1m

1

k
∥M1:k∥ > δ

)
, (A.1)

and that,

Pr

(
max
1≤k≤n

1

k
∥M1:k∥ > δ

)
≤ 4

A(d)C(ξ)

δ2
n2d

n∑
t=1

(
1

t

)2

. (A.2)

Here C(ξ) < ∞ such that ∀i, j, E(∥Mi:j∥2) ≤ C(ξ)|j − i + 1|2d+1. Suppose (A.2) holds.
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Then,

Pr

(
max

2pm≤k≤2p+1m

1

k
∥M1:k∥ > δ

)
≤Pr

(
1

2pm
∥M1:m∥ >

δ

2

)
+ Pr

(
max

2pm+1≤k≤2p+1m

1

k
∥M2pm+1:2p+1m∥ >

δ

2

)

≤ 4
A(d)C(ξ)

δ2
(2pm)2d−2 + 4

A(d)C(ξ)

δ2
(2pm)2d

2p+1∑
t=2pm+1

(
1

t

)2

≤ 8
A(d)C(ξ)

δ2
(2pm)2d−1.

Moreover, using (A.1) we have that,

Pr

(
max
k≥m

1

k
∥M1:k∥ > δ

)
≤ 8

A(d)C(ξ)

δ2

∞∑
p=0

(2pm)2d−1 ≤ L

δ2
m2d−1,

where L < ∞ is a constant.

We prove (A.2) by the Markov inequality. To simplify notation we define Si:j = maxk=i,...,j
1
k ∥M1:k∥.

We need to show that,

E
(
S2

1:n

)
≤ C(ξ)A(d)n2d

n∑
t=1

1

t2
. (A.3)

If (A.3) holds, our auxiliary result in (A.2) is proven by the Markov inequality. The claim in

(A.3) is proven by induction on n. For n = 1 the inequality is obvious for A(d) = 1, from the

result in Kechagias and Pipiras (2015) who showed that for the partial sums M i:j there exists a

C(ξ) < ∞ such that, for all i, j,

E
(
∥M i:j∥2

)
≤ C(ξ) |j − i+ 1|2d+1. (A.4)

For the induction step we set m = ⌈n2 ⌉+ 1. Then, we note that,

max
k=1,...,n

1

k
∥M1:k∥ ≤ 1

m
M1:m +

((
max

k=1,...,m−1

1

k
∥M1:k∥

)2

+

(
max

k=m+1,...,n

1

k
∥M1:k∥

)2
)1/2

.
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Applying the Minkowski inequality to the above inequality yields,

E
(
S2

1:n

)1/2 ≤ 1

m
(E(∥M1:m∥2)1/2 +

(
E(S2

1:m−1) + E(S2
m+1:n)

)1/2
≤ 1

m

(
C(ξ)m2d+1

)1/2
+

(
A(d)C(ξ)

(
(m− 1)2d

m−1∑
t=1

1

t2
+ (n−m)2d

n∑
t=m+1

1

t2

))1/2

≤

(
C(ξ)m2d

n∑
t=1

1

t2

)1/2

+

(
A(d)C(ξ)

(n
2

)2d(m−1∑
t=1

1

t2
+

n∑
t=m+1

1

t2

))1/2

≤

(
C(ξ)n2d

n∑
t=1

1

t2

)1/2 (
1 +

(
A(d)

22d

)1/2
)
,

where we used (A.4) and the induction hypothesis in the second line, and the fact that 1 ≤∑m
t=1 1/t

2 in the third line. Now we choose A(d) such that,

1 +
A(d)1/2

2d
≤ A(d)1/2 ⇔ A(d) ≥

(
1− 1

2d

)−2

≥ 1.

The induction step is proven and thus this concludes the proof of inequality (A.3).

Denote WD(t) = (Wd1(t), . . . ,Wdn(t))
′ an n-dimensional fractional Brownian motion with n

different memory parameters D = (d1, . . . , dn)
′ (cf. Marinucci and Robinson (2000), Davidson

and Jong (2000), Chung (2002)). Each Wdi(t), i = 1, ..., n, is a one-dimensional fractional

Brownian motion defined as,

Wdi(t) =
1

Γ(di + 1)

(∫ t

0
(t− s)didW

(i)
0 (s) +

∫ 0

−∞

(
(t− s)di − (−s)di

)
dW

(i)
0 (s)

)
,

where W
(i)
0 (t) is the ith element of an n-dimensional Brownian motion with covariance matrix

Ω.

Lemma A.2 (FCLT, SLLN). Let (ξi)i≥1 be a sequence of mean zero Rn-valued random vectors

that satisfy Assumption 4. Then,

(a) (FCLT)

diag(T−1/2−d1 , . . . , T−1/2−dn)

[Tr]∑
t=1

ξt ⇒ ΩWD(r), (A.5)

where WD(r) is an n×1 vector of independent fractional Wiener processes and ⇒ denotes

weak convergence under the Skorokhod topology;
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(b) (SLLN)

k−1
k∑

i=1

ξi
a.s.−−→ 0, as k → ∞. (A.6)

Proof. a) Under our Assumptions, Theorem 1 of Chung (2002) holds and gives this result.

b) Under our Assumptions, Corollary 3 of Wu (2007) applies and gives this result.

A.2 The Ten Properties of the Quasi-Likelihood Ratio

This section provides the properties of the quasi-likelihood ratio and parameter estimates, which

will be relevant in the subsequent proofs of our results. Consider,

L(1, k;β,Σ) =

k∏
t=1

f(yt|xt, ...,β,Σ)

k∏
t=1

f(yt|xt, ...,β0,Σ0)

,

where β0 and Σ0 describe the true coefficients and variance matrix, respectively. In the following,

we denote the estimates obtained from maximizing L(1, k;β,Σ) as β̂(k) and Σ̂(k). Then the

following properties hold:

Property 1. For each δ ∈ (0, 1],

sup
⌊Tδ⌋≤k≤T

L(1, k; β̂(k), Σ̂(k)) = Op(1),

sup
⌊Tδ⌋≤k≤T

(∥β̂(k) − β0∥+ ∥Σ̂(k) −Σ0∥) = Op(T
d−1/2).

Proof. The strong consistency of (β̂(k), Σ̂(k)) follows using the arguments of Qu and Perron (2007).

Thus, we can write that,

β̂(k) − β0 =

(
k∑

t=1

xtΣ̂
−1
(k)x

′
t

)−1 k∑
t=1

xtΣ̂
−1
(k)ut,

and apply the generalized Hájek-Rényi inequality introduced in Lemma A.1 on
∑k

t=1 xt(Σ0)
−1ut.

Together with the strong consistency of Σ̂(k) it follows that sup⌊Tδ⌋≤k≤T ∥β̂(k)−β0∥ = Op(T
−1/2+d).

Furthermore,

Σ̂(k) −Σ0 =
1

k

k∑
t=1

(ut − x′
t(β̂(k) − β0))(ut − x′

t(β̂(k) − β0))
′ −Σ0.
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Applying again the generalized Hájek-Rényi inequality provided in Lemma A.1 it follows that

sup⌊Tδ⌋≤k≤T ∥Σ̂(k)−Σ0∥ = Op(T
−1/2+d), and as a direct consequence sup⌊Tδ⌋≤k≤T L(1, k; β̂(k), Σ̂(k)) =

Op(1).

Property 2 next is modified compared to property 2 of Qu and Perron (2007). Instead of

considering the supremum of the likelihood over 1 ≤ k ≤ T we consider the supremum over

⌊δT ⌋ ≤ k ≤ T, for some δ ∈ (0, 1).

Property 2. For some δ ∈ (0, 1) and each ϵ > 0, there exists a B > 0 such that,

Pr

(
sup

⌊δT ⌋≤k≤T
T−BL(1, k; β̂(k), Σ̂(k)) > 1

)
< ϵ,

for all large T .

Proof. This result is a direct consequence of Property 1.

Property 3. Let ST = {(β,Σ) : ∥β−β0∥ ≥ T−1/2+d log T or ∥Σ−Σ0∥ ≥ T−1/2+d log T}. For

any δ ∈ (0, 1), D > 0 and ϵ > 0 the following statement holds when T is large:

Pr

(
sup

k≥⌊δT ⌋
sup

(β,Σ)∈ST

TDL(1, k;β,Σ) > 1

)
< ϵ. (A.7)

Proof. To prove this result we proceed in two steps: First, we consider the behaviour of the

likelihood function over a compact set and show that the claim is true. Second, we argue why

this is still true once we remove the requirement of a compact parameter subset. Define,

Θ2 = {(β,Σ) : ∥β∥ ≤ d1, λmin(Σ) ≥ d2, λmax(Σ) ≤ d3},

where λmin and λmax denote the smallest and largest eigenvalues of Σ and the finite constants

d1, d2 and d3 are chosen in such a way that (β0,Σ0) is an inner point of Θ2. As noted above, we

first show (A.7) with the second supremum taken over ST ∩Θ2 which is compact. We decompose

the segmential log-likelihood as logL(1, k;β,Σ) = L1,T +L2,T , such that,

L1,T = −k

2
log|I +ΨT | −

k

2

[
1

k

k∑
t=1

η′
t(I +ΨT )

−1ηt −
1

k

k∑
t=1

η′
tηt

]

and

L2,T = β∗′
k∑

t=1

xtΣ
−1ut −

k

2
β∗′
(
1

k

k∑
t=1

xtΣ
−1x′

t

)
β∗,
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where β∗ = β−β0,Σ
∗ = Σ−Σ0,ηt = (Σ0)

−1ut and ΨT = (Σ0)
−1/2Σ∗(Σ0)

−1/2. We note that

only L2,T depends on β∗. We split the parameter space ST = S1,T ∪ S2,T with,

S1,T = {(β,Σ) : ∥Σ−Σ0∥ ≥ T−1/2+d log T, β arbitrary}

and

S2,T = {(β,Σ) : ∥β − β0∥ ≥ T−1/2+d log T and ∥Σ−Σ0∥ ≤ T−1/2+d log T}.

It has to be shown that,

Pr

(
sup

k≥⌊Tδ⌋
sup

(β,Σ)∈S1,T∩Θ2

TDL(1, k;β,Σ) > 1

)
< ϵ (A.8)

and

Pr

(
sup

k≥⌊Tδ⌋
sup

(β,Σ)∈S2,T∩Θ2

TDL(1, k;β,Σ) > 1

)
< ϵ. (A.9)

We start to show (A.8). On S1,T , L2,T is a quadratic function of β∗ and has maximum value,

sup
S1,T

L2,T =
k

2

(
1

k

k∑
t=1

xtΣ
−1ut

)′(
1

k

k∑
t=1

xtΣ
−1x′

t

)−1(
1

k

k∑
t=1

xtΣ
−1ut

)
.

Applying Property 1 gives,

sup
k≥⌊Tδ⌋

sup
Θ2

∥∥∥∥∥∥
(
1

k

k∑
t=1

xtΣ
−1x′

t

)−1
∥∥∥∥∥∥ = Op(1).

Additionally,

sup
k≥⌊Tδ⌋

∥∥∥∥∥1k
k∑

t=1

xtΣ
−1ut

∥∥∥∥∥ = sup
k≥⌊Tδ⌋

∥∥∥∥∥1k
k∑

t=1

S′(In ⊗ zt)Σ
−1ut

∥∥∥∥∥
= sup

k≥⌊Tδ⌋

∥∥∥∥∥S′(Σ−1 ⊗ In)
1

k

k∑
t=1

(In ⊗ zt)ut

∥∥∥∥∥
≤ sup

k≥⌊Tδ⌋

∥∥∥∥∥1k
k∑

t=1

(In ⊗ zt)ut

∥∥∥∥∥∥∥S′(Σ−1 ⊗ In)
∥∥ .

From the FCLT of Lemma A.2 we have for fixed r > 0 that,

lim
T→∞

Pr

(
sup

k≥⌊Tδ⌋

∥∥∥∥∥1k
k∑

t=1

(In ⊗ zt)ut

∥∥∥∥∥ > rT d−1/2 log1/2 T

)
= 0,
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while ∥S′(Σ−1 ⊗ In)∥ =
∑n

i=1(1 + λi)
−1Op(1), where λi, i = 1, ..., n are the eigenvalues of

(Σ0)
−1/2Σ∗(Σ0)

−1/2. Hence,

sup
k≥⌊Tδ⌋

sup
S1,T∩Θ2

L2,T ≤ k

2

(
n∑

i=1

1

1 + λi

)2

(r2T 2d−1 log T ),

which implies

sup
k≥⌊Tδ⌋

sup
S1,T∩Θ̄2

L2,T ≤ k

2

n∑
i=1

1

1 + λi
r2b2T ,

where bT = T d−1/2 log T with the inequality holding with probability arbitrarily close to 1 for

large T .

For L1,T we start by considering the term in brackets. Introduce an orthogonal matrix U

that diagonalizes (I +ΨT )
−1. Then we have that,

1

k

k∑
t=1

η′
t((I +ΨT )

−1 − I)ηt = tr

(
diag

{
1

1 + λi
− 1

}(
1

k
U

k∑
t=1

ηtη
′
tU

′

))
.

Because ∥U∥ = 1 it suffices to investigate whether,

∥∥∥∥∥1kU
k∑

t=1

ηtη
′
tU

′ − I

∥∥∥∥∥ ≤ 1

k

∥∥∥∥∥
k∑

t=1

(ηtη
′
t − I)

∥∥∥∥∥ .
Then, for any a > 0 by the FCLT of Lemma A.2, it follows that,

lim
T→∞

Pr

(
sup

k≥⌊Tδ⌋

1

k

k∑
t=1

∥(ηtη
′
t − I)∥ > abT

)
= 0.

Hence, arguing as in Bai et al. (1998), we may show that,

sup
k≥⌊Tδ⌋

sup
S1,T∩Θ2

L1,T ≤ −k

2

[
n∑

i=1

(
log(1 + λi) +

(
1

1 + λi
− 1

)
(1 + sign(λi)abT )

)]
,

with probability arbitrarily close to 1 for large T , where a is a fixed positive number which can

be made arbitrarily small. Combining the preceding two inequalities we can show that,

Pr

(
sup

k≥⌊Tδ⌋
sup

(β,Σ)∈S1,T∩Θ2

L1,T + L2,T > −D log T

)
< ε.

It is now straightforward to see that using similar arguments as in Bai et al. (1998) one can show

that (A.9) holds. Therefore, the claim is shown on the compact parameter space Θ2. But as
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in Qu and Perron (2007) we conclude that the result is valid also for an unrestricted parameter

space. Therefore the proof is complete.

Property 4. This property is not needed in our framework.

Property 5 next is different from Property 5 in Qu and Perron (2007) in that we do not

assume that the limit of (hTd2T )/T exists. Instead as pointed out by Bai (2000) we assume the

sufficient condition that lim infT→∞(hTd
2
T )/T ≥ h > 0.

Property 5. Let hT and dT be positive sequences such that hT is nondecreasing, dT → ∞ and

lim infT→∞(hTd
2
T )/T ≥ h > 0. Define Θ3 = {(β,Σ) : ∥β∥ ≤ p1, λmin(Σ) ≥ p2, λmax(Σ) ≤ p3},

where p1, p2 and p3 are arbitrary constants that satisfy p1 < ∞, 0 < p2 ≤ p3 < ∞. Define

ST = {(β,Σ) : ∥β − β0∥ ≥ T−1/2+d log T or ∥Σ −Σ0∥ ≥ T−1/2+d log T}. Then, for any ϵ > 0,

there exists an A > 0, such that, when T is large,

Pr

(
sup

k≥AhT

sup
(β,Σ)∈ST∩Θ̄3

L(1, k;β,Σ) > ϵ

)
< ϵ.

Proof. As in Property 3 we only need to look at the behaviour of L2T over S1,T ∩ Θ̄3. The rest

of the proof is as in Bai et al. (1998). We need to show that,

P ( sup
k≥AhT

sup
(β,Σ)∈S1,T∩Θ̄3

L(1, k;β,Σ) > ϵ) < ϵ

or

P ( sup
k≥AhT

sup
(β,Σ)∈S1,T∩Θ̄3

L1T +L2T > ϵ) < ϵ.

Define bT := T−1/2dT . Now all the arguments in the proof of Property 3 still hold. Thus, we

have,

sup
S1,T

L2T =
k

2

(
1

k

k∑
t=1

xtΣ
−1ut

)′(
1

k

k∑
t=1

xtΣ
−1x′

t

)−1(
1

k

k∑
t=1

xtΣ
−1ut

)
,

where

(
k∑

t=1

xtΣ
−1x′

t

)−1

=

(
k∑

t=1

S′(I ⊗ zt)Σ
−1(I ⊗ z′

t)S

)−1

=

(
S′(Σ−1 ⊗

k∑
t=1

ztz
′
t)S

)−1

.

From l−1
∑l

t=1 ztz
′
t

a.s.−−→ Qz, for a given ϵ > 0, we can always find a k1 > 0 such that,

P ( sup
k≥k1

∥1
k

k∑
t=1

ztz
′
t −Qz∥ > ϵ) < ϵ.
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Define Q△ := k−1
∑k

t=1 ztz
′
t −Qz. Then,

(S′(Σ−1 ⊗ 1

k

k∑
t=1

zt z
′
t)S)

−1 − (S′(Σ−1 ⊗Qz)S)
−1

=(S′(Σ−1 ⊗Qz)S + S′(Σ−1 ⊗Q△)S)−1 − (S′(Σ−1 ⊗Qz)S)
−1

= −A−1B(A+B)−1,

where A = S′(Σ−1 ⊗ Qz)S and B = S′(Σ−1 ⊗ Q△)S. Because Σ−1 has uniformly bounded

eigenvalues and k−1
∑k

t=1 ztz
′
t is positive definite for large k, A−1 and B−1 have bounded eigen-

values. Because B is uniformly small, −A−1B(A +B)−1 is uniformly small for large k. That

is,

(S′(Σ−1 ⊗ k−1
k∑

t=1

ztz
′
t)S)

−1 − (S′(Σ−1 ⊗Qz)S)
−1 a.s.

= o(1) as k → ∞.

Now there exists an M > 0 such that sup(β,Σ)∈S1,T∩Θ̄3
|(S′(Σ−1 ⊗Qz)S)

−1| < M , and we have,

for any ϵ > 0, that there exists an A > 0 such that

P ( sup
k≥AhT

sup
(β,Σ)∈S1,T∩Θ̄3

∥( 1
k

k∑
t=1

xtΣ
−1x′

t)
−1∥ > 2M) < ϵ.

Now,

sup
k≥AhT

∥1
k

k∑
t=1

xtΣ
−1ut∥ = sup

k≥AhT

∥1
k

k∑
t=1

S′(In ⊗ zt)Σ
−1ut∥

≤ sup
k≥AhT

∥1
k

k∑
t=1

(In ⊗ zt)ut∥∥S′(Σ−1 ⊗ In)∥. (A.10)

From Lemma A.1 we have,

P ( sup
k≥AhT

∥1
k

k∑
t=1

(In ⊗ zt)ut∥ > abT ) ≤
C1

AhTa2bT
<

2C1

Aa2h
, (A.11)

for some C1 > 0, where the bound can be made arbitrarily small by choosing a large A. For the

second component,

∥S′(Σ−1 ⊗ In)∥ ≤ nC2

n∑
i=1

1

1 + λi
, (A.12)

for some 0 < C2 < ∞, which depends on the matrix S. Now, combining (A.10)-(A.12), we have,
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for any ϵ > 0 there exists an Ā > 0, such that with probability no less than 1− ϵ,

sup
k≥ĀhT

sup
(β,Σ)∈S1,T∩Θ̄3

|L2T | <ka2b2Tn
2C2

2M(
n∑

i=1

1

1 + λi
)2 ≤ k

2

n∑
i=1

Ga2b2T
1 + λi

=
k

2

n∑
i=1

γ2b2T
1 + λi

with G = 2n3C2
2M/p2. Because a2 can be made arbitrarily small by choosing a large A, so can

γ2. Hence, Property 5 follows.

The next properties (Properties 6 - 10) are the same as Lemmas 6 − 10 of Bai (2000), and

because the proofs are similar, they are omitted for the sake of space.

Property 6. With νT satisfying Assumption 6, for each β and Σ such that ∥β − β0∥ ≤ MvT

and ∥Σ−Σ0∥ ≤ MvT , with M < ∞, we have

sup
1≤k≤T 1/2−dv−1

T

sup
λ,Ξ

L(1, k;β + T−1/2+dλ,Σ+ T−1/2+dΞ)

L(1, k;β,Σ)
= op(1). (A.13)

Property 7. Under the conditions of Property 6, we have,

sup
1≤k≤Mv−2

T

sup
λ,Ξ

log
L(1, k;β + T−1/2+dλ,Σ+ T−1/2+dΞ)

L(1, k;β,Σ)
= op(1). (A.14)

Property 8. We have,

sup
⌊Tδ⌋≤k≤T

sup
β∗,Σ∗,λ,Ξ

log
L(1, k;β0 + T−1/2+dβ∗ + T−1+2dλ,Σ0 + T−1/2+dΣ∗ + T−1+2dΞ)

L(1, k;β0 + T−1/2+dβ∗,Σ0 + T−1/2+dΣ∗)
= op(1),

where the supremum with respect to β∗,Σ∗,λ,Ξ is taken over an arbitrary compact set.

Property 9. Let T1 = ⌊aT ⌋ for some a ∈ (0, 1] and let T2 = ⌊T 1/2−dv−1
T ⌋, where vT satisfies

Assumption 6. Consider

yt =x′
tβ

0
1 +Σ0

1ηt, t = 1, . . . , T1,

yt =x′
tβ

0
2 +Σ0

2ηt, t = T1 + 1, . . . , T1 + T2,

where ∥β0
1−β0

2∥ ≤ MvT and ∥Σ0
1−Σ0

2∥ ≤ MvT for some M < ∞. Let k = T1+T2 be the size

of the pooled sample and let (β̂n, Σ̂n) be the associated estimates. Then β̂n − β0
1 = Op(T

d−1/2)

and Σ̂n −Σ0
1 = Op(T

d−1/2).

Property 10. Property 10 is not needed in our framework.
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A.3 Proof of Lemma 1

Proof. We show the consistency in two steps: First, we prove an auxiliary result on the conver-

gence rate of the break point estimates. Second, we use results from Bai (2000) to justify the

statement.

Let N := ⌊T
1
2
−dν−1

T ⌋ and Aj = {(k1, ..., km) ∈ Λϵ : |ki − k0j | > N, i = 1, . . . ,m}, where Λε is

given in Assumption 11. Because LRT (k̂1, ..., k̂m) ≥ LRT (k
0
1, ..., k

0
m) ≥ LRT (k

0
1, ..., k

0
m,β0,Σ0) =

1, to show (k̂1, ..., k̂m) /∈ Aj , it suffices in a first step to show that,

Pr( sup
(k1,...,km)∈Aj

LRT (k1, . . . , km) > ϵ) < ϵ. (A.15)

We extend the definition of LRT to every subset {l1, . . . , lr} of {1, 2, ..., T − 1}, such that

LRT (l1, . . . , lr) = LRT (l(1), . . . , l(r)), where 0 < l(1) < · · · < l(r) are the ordered versions of

l1, . . . , lr. For every (k1, . . . , km) ∈ Aj ,

LRT (k1, . . . , km) ≤ LRT (k1, . . . , km, k01, . . . , k
0
j−1, k

0
j −N, k0j +N, k0j+1, . . . , k

0
m). (A.16)

Denote the likelihood-ratio of the segment [k, l] by,

D(k, l,β,Σ) =

l∏
t=k+1

f(yt|xt;β,Σ)

l∏
t=k+1

f(yt|xt;β
0,Σ0)

,

and its optimal value,

D(k, l) = sup
β,Σ

D(k, l,β,Σ).

The likelihood-ratio of the entire sample can be written as,

LRT (k1, . . . , km) = D(0, k1) ·D(k1, k2) · · · · ·D(km, T ). (A.17)

The right hand side of (A.16) can be written as the product of at most (2m+2) terms expressible

as D(l, k) as in (A.17). There are at most (2m + 2) terms because ki may coincide with k0l for

some i and l. One of these (2m+ 2) terms is D(k0j −N, k0j +N) and all the rest can be written

as D(l, k) with [l, k] ⊂ [k01 + 1; k0i+1] for some i. By Properties 1 and 2, logD(l, k) = Op(log T )

uniformly in l, k such that k0i + 1 ≤ l < k ≤ k0i+1 with |l − k| > Tν. That is, D(k, l) = Op(T
B)
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for some B > 0. Thus,

LRT (k1, . . . , km) ≤ Op(T
(2m+1)B)D(k0j −N, k0j +N). (A.18)

We now show that D(k0j−N, k0j+N) is small. Introduce the reparameterization LR∗
T (k, l,β,Σ) =

D(k, l,β0+(l− k)−1/2β,Σ0+(l− k)−1/2Σ) assuming that (β0,Σ0) is the true parameter of the

segment [k, l]. We note that,

D(k0j −N, k0j +N) = sup
β,Σ

[D(k0j −N, k0j ;β,Σ) ·D(k0j , k
0
j +N ;β,Σ)]

= sup
β,Σ

[LR∗
T (k

0
j −N, k0j ;N

1/2(β − β0
j ), N

1/2(Σ−Σ0
j ))

× (LR∗
T (k

0
j , k

0
j +N ;N1/2(β − β0

j+1), N
1/2(Σ−Σ0

j+1))]. (A.19)

This follows from the definition of LR∗
T and the fact that (β0

j ,Σ
0
j ) is the true parameter for the

segment [k0j − N, k0j ] and (β0
j+1,Σ

0
j+1) is the true parameter for the segment [k0j + 1, k0j + N ].

From max{∥x− z∥, ∥y − z∥} ≥ ∥x− y∥/2 for all (x, y, z), we have for all β and Σ that,

max{N1/2∥β − β0
j∥, N1/2∥β − β0

j+1∥} ≥N1/2∥β0
j − β0

j+1∥/2

max{N1/2∥Σ−Σ0
j∥, N1/2∥Σ−Σ0

j+1∥} ≥N1/2∥Σ0
j −Σ0

j+1∥/2.

By Assumption 6, we either have N1/2∥β0
j − β0

j+1∥/2 ≥ logN or N1/2∥Σ0
j −Σ0

j+1∥/2 ≥ logN .

This follows from ∥β0
j − β0

j+1∥ ≥ νTC for some C > 0, then,

N1/2∥β0
j − β0

j+1∥/2 = (T 1/2ν−1
T )1/2νTC = C(T 1/2νT )

1
2 ≥ log T ≥ logN.

Now suppose that N1/2∥β0
j−β0

j+1∥/2 ≥ logN . Then we have either (i) N1/2∥β−β0
j∥ ≥ logN

or (ii) N1/2∥β − β0
j+1∥ ≥ logN . For case (i) we can apply Property 3 to the first term inside

the brackets of (A.19) to obtain,

LR∗
T (k

0
j −N, k0j ;N

1/2(β − β0
j ), N

1/2(Σ−Σ0
j )) = Op(N

−A)

for every A > 0. Moreover, by Property 2 the second term inside the bracket of (A.19) is

bounded by Op(log T ). Similarly, for case (ii), we can apply Property 3 to show that the second

term of (A.19) is Op(N
−A) and the first term is bounded by Op(log T ). So, for each case, we
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have,

D(k0j −N, k0j +N) = log T Op(N
−A),

for an arbitrary A > 0. Moreover, N−A ≤ T−A/2 since N ≥ T 1/2 for all large T . Thus, from

(A.18), LRT (k1, . . . , km) ≤ Op(T
(2m+1)B− 1

2
A) log T

p−→ 0 for a large A. This proves (A.15).

Now by Proposition 2 of Bai (2000) we can deduce that k̂j − k0j = Op(ν
2
T ), for j = 1, . . . ,m,

using the preliminary convergence order given by (A.15). The convergence rate for the estimated

regression coefficients βj and covariances Σj follows as in Bai (1997b) and Bai and Perron (1998)

due to the fast convergence of the estimated break points.

A.4 Proof of Theorem 1

Proof. Without loss of generality, consider the j-th break date and start with the case where

the candidate estimate is before the true break date. We obtain an expansion for lr1j ([s/ν
2
r ]) as

defined in Theorem 1. Note that s is implicitly defined by s = ν2T (Ti − T 0
i ) = rν2T . We deal with

each term separately.

For the first term, we have as in Qu and Perron (2007), that,

1

2

T 0
j∑

t=T 0
j +⌊s/ν2T ⌋

u′
t

(
(Σ0

j )
−1− (Σ0

j+1)
−1
)
ut =

1
2 tr
(
(Σ0

j )
1
2 (Σ0

j+1)
−1c2,j(Σ

0
j )

− 1
2 νT

T 0
j∑

t=T 0
j +⌊s/ν2T ⌋

(ηt η
′
t − I)

− r
2νT tr

(
(Σ0

j+1)
−1c2,j

)
,

and for the second term,

−r

2
(log |Σ0

j | − log |Σ0
j+1|) =

r

2
νT tr

(
c2,j(Σ

0
j+1)

−1
)
+

r

4
ν2T tr

(
[c2,j(Σ

0
j+1)

−1]2
)
.

The sum of the first two terms is,

1

2

T 0
j∑

T 0
j +⌊s/ν2T ⌋

u′
t

(
(Σ0

j )
−1 − (Σ0

j+1)
−1
)
ut −

r

2
(log|Σ0

j | − log|Σ0
j+1|)

=
1

2
tr
(
(Σ0

j )
1
2 (Σ0

j+1)
−1c2,j(Σ

0
j )

− 1
2 νT

T 0
j∑

T 0
j +⌊s/ν2T ⌋

(ηt η
′
t − I)

)
+

r

4
ν2T tr

(
[c2,j(Σ

0
j+1)

−1]2
)
= I + II.
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Now,

T 1−2d(I + II) d→1

2
tr
(
(Σ0

j )
1
2 (Σ0

j+1)
−1c2,j(Σ

0
j )

− 1
2 ξ1,d,j(s)

)
+

s

4
tr
(
[(Σ0

j+1)
−1c2,j ]

2
)

=
1

2
tr(A1,jξ1,d,j(s)) +

s

4
tr(A2

1,j),

where ξ1,d,j is a nonstandard Brownian motion process with var
[
vec(ξ1,d,j(s))

]
= Ω0

1,j . For the

third term we have,

−1

2

T 0
j∑

t=T 0
j +[s/ν2T ]

(β0
j − β0

j+1)
Txt(Σ

0
j+1)

−1x′
t(β

0
j − β0

j+1)
P→ 1

2
s c′1,j Q1,j c1,j .

Note that xt belongs to regime j, but it is scaled by the covariance matrix of regime j + 1

because the estimate of the break occurs before the true break date. For the fourth term,

−T 1−2d

T 0
j∑

t=T 0
j +⌊s/ν2T ⌋

(β0
j − β0

j+1)
′xt(Σ

0
j+1)

−1ut
d→ c′1,j(Π1,j)

1
2 ξ1,d,j(s)

with

Π1,j = lim
T→∞V ar

{
(T 0

j − T 0
j−1)

− 1
2

[ T 0
j∑

t=T 0
j +⌊s/ν2T ⌋

xt(Σ
0
j+1)

−1(Σ0
j )

1
2ηt

]}
.

Combining these results, we have, for s < 0 that,

T 1−2dlr1j

(
[
s

ν2T
]
)

d→− |s|
2

[1
2
tr(A2

1,j) + c′1,j Q1,j c1,j

]
+

1

2
vec(A′

1,j) vec(ξ1,d,j(s)) + c′1,j(π1,j)
1
2 ξ1,d,j(s).

Now, vec(A1,j)
′ vec(ξ1,d,j(s))

d
=
(
vec(A1,j)

TΩ0
1,jvec(A1,j)

) 1
2
V1,d,j(s), where V1,d,j(s) is a

standard fractional Brownian motion.

Similarly, c′1,j(Π1,j)
1
2 ξ1,d,j(s)

d
= (c′1,j Π1,j c1,j)

1
2U1,d,j(s) and U1,d,j(s) is a standard fractional

Brownian motion. Under the stated conditions, V1,d,j(s) and U1,d,j(s) are independent. Then,

(
vec(A′

1,j)Ω
0
1,jvec(A1,j)/4

) 1
2
V1,d,j(s) +

(
c′1,j(π1,j)c1,j

) 1
2
U1,d,j(s)

d
=
(
vec(A1,j)Ω

0
1,jvec(A1,j)/4 + c′1,j(π1,j)c1,j

) 1
2
W1,j,d(s)

≡T1,j W1,j,d(s),
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where W1,j,d(s) is a unit fractional Brownian motion.

Hence, with ∆1,j = tr(A2
1,j)/2 + c′1,j Q1,j c1,j , we have,

T 1−2dlr1j

(
[
s

ν2T
]
)

d→ −|s|
2
∆1,j + T1,j W1,j,d(s).

The proof for s > 0 is similar:

T 1−2dlr1j

(
[
s

ν2T
]
)

d→ −|s|
2
∆2,j + T2,j W2,j,d(s), (A.20)

with ∆2,j = tr(A2
2,j)/2 + c′1,j Q2,j c1,j and

T2,j =
[
vec(A′

2,j)Ω
0
2,jvec(A2,j)/4 + c′1,j(π2,j)c1,j

] 1
2
.

By definition lr1j (0) = 0. Given that s = ν2T (Tj − T 0
j ), the argmax yields the scaled estimate

ν2T (T̂j − T 0
j ). The result follows because we can take the argmax over the compact set CM

and with Lemma 1, this is equivalent to taking the argmax in an unrestricted set because with

probability arbitrarily close to 1, the estimates will be contained in CM .

Hence,

T 1−2dν2T (T̂j − T 0
j )

d→
argmax

s

 − |s|
2 ∆1,j + T1,j Wj,d(s), s ≤ 0,

− |s|
2 ∆2,j + T2,j Wj,d(s), s > 0,

(A.21)

where Wj,d(s) = W1,j,d(s) for s ≤ 0 and Wj,d(s) = W2,j,d(s) for s > 0. Multiplying by ∆1,j/T
2
1,j

and applying a change of variable with u = (∆2
1,j/T

2
1,j)s, we obtain Theorem 1.

A.5 Proof of Theorem 2

Proof of Theorem 2. Before proceeding with the proof we first introduce some notation. Let

Σ̃1,j =
1

Tj

Tj∑
t=1

(yt − x′
atβ̃a − x′

btβ̃b1,j)(yt − x′
atβ̃a − x′

btβ̃b1,j),

be the estimated covariance matrix using the full sample estimate of βa obtained under the null

hypothesis of no change and using the estimate of βb based on data up to the last date of regime

j, defined as,

β̃b1,j =

 Tj∑
t=1

xbtΣ̃
−1
1,jx

′
bt

−1
Tj∑
t=1

xtΣ̃
−1
1,j (yt − x′

atβ̃a).
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Additionally,

Σ̂j =
1

Tj − Tj−1

Tj∑
t=Tj−1+1

(yt − x′
atβ̂a − x′

btβ̂bj)(yt − x′
atβ̂a − x′

btβ̂bj)
′,

is the estimate of the covariance matrix of the errors under the alternative hypothesis using the

full sample estimate of βa and using the estimate of βb based on data from regime j only, that

is,

β̂b,j =

 Tj∑
t=Tj−1+1

xbtΣ̂
−1
j x′

bt

−1
Tj∑

t=Tj−1+1

xtΣ̂
−1
j (yt − x′

atβ̂a).

Consider the log-likelihood of a given partition of the sample,

LRT (T1, . . . , Tm) =
2

T 2d
log L̂T (T1, . . . , Tm)− 2

T 2d
log L̃T =

T

T 2d
log |Σ̃| − T

T 2d
log |Σ̂|

=
1

T 2d

m∑
j=1

(Tj+1 log |Σ̃1,j+1| − Tj log |Σ̃1,j | − (Tj+1 − Tj) log |Σ̂j+1|)

=:
1

T 2d

m∑
j=1

F j
T .

Using a second-order Taylor series expansion of each term gives,

log |Σ̃1,j+1| = log |Σ0|+ tr((Σ0)−1(Σ̃1,j+1 −Σ0))

− 1

2
tr((Σ0)−1(Σ̃1,j+1 −Σ0)(Σ0)−1(Σ̃1,j+1 −Σ0)) + op(T

−1),

log |Σ̃1,j | = log |Σ0|+ tr((Σ0)−1(Σ̃1,j −Σ0))

− 1

2
tr((Σ0)−1(Σ̃1,j −Σ0)(Σ0)−1(Σ̃1,j −Σ0)) + op(T

−1),

log |Σ̂j+1| = log |Σ0|+ tr((Σ0)−1(Σ̂j+1 −Σ0))

− 1

2
tr((Σ0)−1(Σ̂j+1 −Σ0)(Σ0)−1(Σ̂j+1 −Σ0)) + op(T

−1).
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Applying this to the terms F j
T ,

F j
T :=F j

1,T + F j
2,T

=tr(Tj+1(Σ
0)−1(Σ̃1,j+1 −Σ0)− Tj(Σ

0)
−1(Σ̃1,j −Σ0)) (A.22)

− (Tj+1 − Tj)(Σ
0)−1(Σ̂j+1 −Σ0))

− 1

2
tr(Tj+1[(Σ

0)−1(Σ̃1,j+1 −Σ0)]2 (A.23)

− Tj [(Σ
0)−1(Σ̃1,j −Σ0)]2 − (Tj+1 − Tj)[(Σ

0)
−1(Σ̂j+1 −Σ0)]2).

First we consider F j
1,T and write the regression in matrix form. Under the null hypothesis, we

have,

Y = Xaβa +Xbβb +U ,

with E(UU ′) = IT ⊗Σ0. If only data up to the last date of regime j is included, we have,

Y 1,j = Xa1,jβa +Xb1,jβb1,j +U1,j .

We now define Y d
1,j = (IT ⊗ Σ̃

−1/2
1,j )Y 1,j , W 1,j = (IT ⊗ Σ̃

−1/2
1,j )Xa1,j , Z1,j = (IT ⊗ Σ̃

−1/2
1,j )Xb1,j

and Ud
1,j = (IT ⊗ Σ̃

−1/2
1,j )U1,j . Then, omitting the subscript when the full sample is used, we

have,

β̃a = [W ′MZW ]−1W ′MZY
d
, (A.24)

β̃b1,j = (Z ′
1,jZ1,j)

−1Z ′
1,j(Y

d
1,j −W 1,jβ̃a), (A.25)

where MZ = I −Z(Z′Z)−1Z ′. The regression equation using only regime (j + 1) is

Y j+1 = Xa,j+1βa +Xb,j+1βb,j+1 +U j+1. (A.26)

Define Ȳ
d
j+1 = (IT ⊗ Σ̂

−1/2
j+1 )Y j+1, W̄ j+1 = (IT ⊗ Σ̂

−1/2
j+1 )Xa,j+1, Z̄j+1 = (IT ⊗ Σ̂

−1/2
j+1 )Xb,j+1,

Ū
d
j+1 = (IT ⊗ Σ̂

−1/2
j+1 )U j+1, Z̄ = diag(Z̄1, . . . , Z̄m+1). Then, omitting the subscript when the

full sample is used, we have

β̂a = [W̄
′
M Z̄W̄ ]−1W̄

′
M Z̄Ȳ

d
, (A.27)

β̂b,j+1 = (Z̄
′
j+1Z̄j+1)

−1Z̄
′
j+1(Ȳ

d
j+1 − W̄j+1β̂a). (A.28)
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Note that the choice of the estimate of the covariance matrix in (A.24) to (A.28) will have no

effect provided a consistent one is used. As in Qu and Perron (2007) (supplement, pp. 25-26)

we can show for the first component of F j
1,T (or with obvious changes for the second component)

that,

Tj+1 tr((Σ
0)−1Σ̃j+1) = A′

TW
′
1,j+1MZ1,j+1W 1,j+1AT −Ud′

1,j+1P Z1,j+1U
d
1,j+1

− 2(MZ1,j+1W 1,j+1AT )
′Ud

1,j+1 +U ′
1,j+1(IT ⊗ (Σ0)−1)U1,j+1 + op(1),

where AT = [W ′MZW ]−1W ′MZU
d. For the third component of F j

1,T it can be shown that,

(Tj+1 − Tj) tr((Σ
0)−1Σ̂j+1)

=Ā
′
TW̄

′
j+1M̄ Z̄j+1

W̄ j+1ĀT − Ū
d′

j+1P̄ Z̄j+1
Ū

d
j+1

− 2(M̄ Z̄j+1
W̄ j+1ĀT )

′Ū
d
j+1 + Ū

′
j+1(IT ⊗ (Σ0)−1)Ū j+1 + op(1),

where ĀT = [W̄
′
M̄Z̄W̄ ]−1W̄

′
M̄ZŪ

d. Following the same arguments as in Bai and Per-

ron (1998):p.75, we have plim
T→∞

T 1/2ĀT = plim
T→∞

T 1/2AT . Hence, all terms that involve ĀT and

AT eventually cancel and

F j
1,T = Ud′

1,jP Z1,jU
d
1,j +Ud′

j+1P Z̄j+1
Ud

j+1 −Ud′
1,j+1P Z1,j+1U

d
1,j+1 + op(1).

Now, T−dZ ′
1,jU

d
1,j ⇒ Q

1/2
b W ∗

D,pb
(λi) and T−1

∑Tj

t=1 xbt(Σ
0)−1x′

bt →p λiQb where W ∗
D,pb

(λi)

is a pb vector of zeros and independent fractional Wiener processes defined on [0, 1] as given in

Theorem 2, and where Qb is the appropriate submatrix of Q that corresponds to the elements

of xbt. Hence,

T−2dUd′
1,j+1P Z1,j+1U

d
1,j+1 ⇒ [W ∗

D,pb
(λj+1)

′W ∗
D,pb

(λj+1)]/λj+1.

Using similar arguments,

T−2dUd′
1,jP Z1,jU

d
1,j ⇒ [W ∗

D,pb
(λj)

′W ∗
D,pb

(λj)]/λj
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and

T−2dUd′
j+1P Z̄j+1

Ud
j+1

⇒ (W ∗
D,pb

(λj+1)−W ∗
D,pb

(λj))
′(W ∗

D,pb
(λj+1)−W ∗

D,pb
(λj))/(λj+1 − λj).

These results imply that the first component in (A.22) has the limit,

F j
1,T ⇒

(λjW
∗
D,pb

(λj+1)− λj+1W
∗
D,pb

(λj))
′(λjW

∗
D,pb

(λj+1)− λj+1W
∗
D,pb

(λj))

(λj+1 − λj)λjλj+1
. (A.29)

Consider now the limit of
∑m

j=1 F
j
2,T when changes in Σ0 are allowed. We have,

F j
2,T =− 1

2

m∑
j=1

tr(Tj+1((Σ
0)−1Σ̃1,j+1 − I)2)

− Tj((Σ
0)−1Σ̃1,j − I)2 − (Tj+1 − Tj)((Σ

0)−1Σ̂j+1 − I)2.

Let ((Σ0)−1Σ̃1,j+1−I)F ("F" for full sample) be the matrix whose entries are those of ((Σ0)−1Σ̃1,j+1−

I) for the corresponding entries of Σ0 that are not allowed to vary across regimes; the remaining

entries are filled with zeros. Then,

[
((Σ0)−1Σ̃1,j+1 − I)F

]
i,k

=
Σik

T

T∑
t=1

(yit − x′
itβ)

′(ykt − x′
ktβ)− Ii,k,

where Σik is the (i, k) element of (Σ0)−1 and Ii,k is the (i, k) element of I. Also let ((Σ0)−1Σ̃1,j+1−

I)S ("S" for relevant segments) be the matrix whose entries are those of ((Σ0)−1Σ̃1,j+1 − I) for

the corresponding entries of Σ0 that are allowed to vary across regimes, the remaining entries

being filled with zeros. Then,

[
((Σ0)−1Σ̃1,j+1 − I)S

]
i,k

=
Σik

Tj+1

Tj+1∑
t=1

(yit − x′
itβ̃)

′(ykt − x′
ktβ̃)− Ii,k.

Note that the entries for ((Σ0)−1Σ̃1,j+1 − I)F are the same for all segments. Define similarly
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((Σ0)−1Σ̃1,j − I)F , ((Σ0)−1Σ̃1,j − I)S , ((Σ0)−1Σ̂j+1 − I)F and ((Σ0)−1Σ̂j+1 − I)S . Then,

((Σ0)−1Σ̃1,j+1 − I) = ((Σ0)−1Σ̃1,j+1 − I)F + ((Σ0)−1Σ̃1,j+1 − I)S ,

((Σ0)−1Σ̃1,j − I) = ((Σ0)−1Σ̃1,j − I)F + ((Σ0)−1Σ̃1,j − I)S ,

((Σ0)−1Σ̂j+1 − I) = ((Σ0)−1Σ̂j+1 − I)F + ((Σ0)−1Σ̂j+1 − I)S ,

and, in view of (A.23),

m∑
j=1

F j
2,T =− 1

2
tr(

m∑
j=1

[Tj+1((Σ
0)−1Σ̃1,j+1 − I)S((Σ0)−1Σ̃1,j+1 − I)S

− Tj((Σ
0)−1Σ̃1,j − I)S((Σ0)−1Σ̃1,j − I)S

− (Tj+1 − Tj)((Σ
0)−1Σ̂

S
j+1 − I)S((Σ0)−1Σ̂

S
j+1 − I)S ]) + op(1).

Now, because β̃ − β0 = Op(T
−1/2+d), we have,

Tj+1

T 2d
((Σ0)−1Σ̃1,j+1 − I)S((Σ0)−1Σ̃1,j+1 − I)S

=
T

Tj+1

T−1/2−d

Tj+1∑
t=1

[(Σ0)−1utu
′
t − I]

ST−1/2−d

Tj+1∑
t=1

[(Σ0)−1utu
′
t − I]

S

+ op(1)

⇒ ξdn(λj+1)
Sξdn(λj+1)

S

λj+1
;

Tj

T 2d
((Σ0)−1Σ̃1,j − I)S((Σ0)−1Σ̃1,j − I)S

=
T

Tj

T−1/2−d

Tj∑
t=1

[(Σ0)−1utu
′
t − I]

ST−1/2−d

Tj∑
t=1

[(Σ0)−1utu
′
t − I]

S

+ op(1)

⇒ ξdn(λj)
Sξdn(λj)

S

λj
;
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and

(Tj+1 − Tj)

T 2d
((Σ0)−1Σ̂

S
j+1 − I)S((Σ0)−1Σ̂

S
j+1 − I)S

=
T

Tj+1 − Tj

T−1/2−d

Tj+1∑
t=Tj+1

[(Σ0)−1utu
′
t − I]

S

×

T−1/2−d

Tj+1∑
t=Tj+1

[(Σ0)−1utu
′
t − I]

S

+ op(1)

⇒
(ξ∗D,n(λj+1)− ξ∗D,n(λj))

S(ξ∗D,n(λj+1)− ξ∗D,n(λj))
S

λj+1 − λj
,

where ξ∗D(·) is an n× n matrix whose elements are,

[ξ∗D(·)]i,j =


[ξD(·)]i,j , if di = dj = max1≤k≤n dk,

0, else,

and where ξD is a (nonstandard) fractional Brownian motion defined on [0, 1] such that Var(vec(ξD(1))) =

Ω (which follows from Theorem 4.8.2 of Giraitis et al. (2012) p.109). Hence,

m∑
j=1

F j
2,T ⇒− 1

2
tr

(
ξ∗D,n(λj+1)

Sξ∗D,n(λj+1)
S

λj+1
−

ξ∗D,n(λj)
Sξ∗D,n(λj)

S

λj

+
(ξ∗D,n(λj+1)− ξ∗D,n(λj))

S(ξ∗D,n(λj+1)− ξ∗D,n(λj))
S

λj+1 − λj

)
=− 1

2

[
vec(ξ∗D,n(λj+1)

S)′ vec(ξ∗D,n(λj+1)
S)

λj+1

−
vec(ξ∗D,n(λj)

S)′ vec(ξ∗D,n(λj)
S)

λj

×
(
vec(ξ∗D,n(λj+1)

S)− vec(ξ∗D,n(λj)
S)
)′

×
(vec(ξ∗D,n(λj+1)

S)− vec(ξ∗D,n(λj)
S)

(λi+1 − λi)

]

using the fact that tr(AA) = vec(A)′ vec(A) for a symmetric matrix A. Now let H be the

matrix that selects the elements of vec(Σ0) that are allowed to change. Then,

vec(ξ∗D,n(λj+1)
S)′ vec(ξ∗D,n(λj+1)

S) = vec(ξ∗D,n(λj+1))
′H ′H vec(ξ∗D,n(λj+1))

d
= W ∗

D,n∗
b
(λj+1)

′HΩH ′W ∗
D,n∗

b
(λj+1),
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where W ∗
D,n∗

b
is an n∗

b vector of processes as defined in Theorem 2. Hence, we have

m∑
j=1

F j
2,T ⇒− 1

2

[W ∗
D,n∗

b
(λj+1)

′H ′ΩHW ∗
D,n∗

b
(λj+1)

λj+1
−

W ∗
D,n∗

b
(λj)

′H ′ΩHW ∗
D,n∗

b
(λj)

λj

−
(W ∗

D,n∗
b
(λj+1)−W ∗

D,n∗
b
(λj))

′H ′ΩH(W ∗
D,n∗

b
(λj+1)−W ∗

D,n∗
b
(λj))

λj+1 − λj

]
=(λjW

∗
D,n∗

b
(λj+1)− λj+1W

∗
D,n∗

b
(λj))

′H ′ΩH

× (λjW
∗
D,n∗

b
(λj+1)− λj+1W

∗
D,n∗

b
(λj))/(λjλj+1(λj+1 − λj)). (A.30)

By combining (A.29) and (A.30) we have shown the limiting distribution of our test.

A.6 Proof of Theorem 4

Proof. From Theorem 1 we have the consistency of our break point estimates at each iteration.

If we have m0 break points in the data the break point test of Theorem 2 rejects in each iteration

m < m0 with a probability tending to one for T → ∞ due to the Pitman efficiency of the test. In

iteration m0 the test has a type-I error of α and thus the hit rate of our procedure is (1−α)%.

A.7 Proof of Lemma 3

Proof. The proof of Lemma 3 is based on the reparameterization of β which comes from the rate

of integration of the regressors x. We use the fact that the regression residuals are,

ut(β) = yt − x̃
′
t(β0 + T−dxβ)

= ut − T−dxx̃
′
tβ.

Therefore, using from now on xt = T−dx/2x̃t, we have that,

ut(β) = ut − T−dx/2x
′
tβ.

In this way the likelihood-ratio for stochastic regressors has the same form as the likelihood-

ratio for deterministic regressors, except that ut is replaced by ut(β). All notations in the proof

of Lemma 1 remain unchanged as long as the I(dx) regressors are considered as divided by T dx/2.

To prove the lemma it is enough to show that our ten properties still hold for the stochastic,

possibly non-stationary, regressors, which is the main problem. Properties 1, 2 and 6 to 10 still
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hold in this case. Adaptions are needed for Properties 3 and 5 so we will give the proofs here.

Property 11. Let ST = {(β,Σ) : ∥β − β0∥ ≥ T du+dx log T or ∥Σ − Σ0∥ ≥ T−1/2+du log T}.

For any δ ∈ (0, 1), D > 0 and ϵ > 0 the following statement holds when T is large:

Pr

(
sup

k≥⌊δT ⌋
sup

(β,Σ)∈ST

TDL(1, k;β,Σ) > 1

)
< ϵ.

Proof. For the proof we proceed in two steps: First, we consider the behaviour of the likelihood

function over a compact set and show that the claim is true. Second, we argue why this is still

true once we remove the requirement of a compact parameter subset. Define,

Θ2 = {(β,Σ) : ∥β∥ ≤ a1, λmin(Σ) ≥ a2, λmax(Σ) ≤ a3},

where λmin and λmax denote the smallest and largest eigenvalues of Σ and the finite constants

a1, a2 and a3 are chosen in such a way that (β0,Σ0) is an inner point of Θ2. As explained we

first show (A.7) with the second supremum taken over ST ∩Θ2 which is compact. We decompose

the segmential log-likelihood as logL(1, k;β,Σ) = L1,T + L2,T , where

L1,T = −k

2
log|I +ΨT | −

k

2

[
1

k

k∑
t=1

η′
t(I +ΨT )

−1ηt −
1

k

k∑
t=1

η′
tηt

]
,

L2,T = β∗′
k∑

t=1

xtΣ
−1ut −

k

2
β∗′
(
1

k

k∑
t=1

xtΣ
−1x′

t

)
β∗,

β∗ = β − β0,Σ
∗ = Σ−Σ0,ηt = (Σ0)

−1ut and ΨT = (Σ0)
−1/2Σ∗(Σ0)

−1/2. We note that only

L2,T depends on β∗. We split the parameter space ST = S1,T ∪ S2,T where,

S1,T = {(β,Σ) : ∥Σ−Σ0∥ ≥ T−1/2+du log T, β arbitrary}

and

S2,T = {(β,Σ) : ∥β − β0∥ ≥ T du−dx log T and ∥Σ−Σ0∥ ≤ T−1/2+du log T}.

It has to be shown that,

Pr

(
sup

k≥⌊Tδ⌋
sup

(β,Σ)∈S1,T∩Θ2

TDL(1, k;β,Σ) > 1

)
< ϵ (A.31)

- 60 -



and

Pr

(
sup

k≥⌊Tδ⌋
sup

(β,Σ)∈S2,T∩Θ2

TDL(1, k;β,Σ) > 1

)
< ϵ. (A.32)

We start to show (A.31). On S1,T , L2,T is a quadratic function of β∗ and has maximum value,

sup
S1,T

L2,T =
k

2

(
1

k

k∑
t=1

xtΣ
−1ut

)′(
1

k

k∑
t=1

xtΣ
−1x′

t

)−1(
1

k

k∑
t=1

xtΣ
−1ut

)
.

Applying Property 1 gives,

sup
k≥⌊Tδ⌋

sup
Θ2

∥∥∥∥∥∥
(
1

k

k∑
t=1

xtΣ
−1x′

t

)−1
∥∥∥∥∥∥ = Op(1).

Additionally we see that,

sup
k≥⌊Tδ⌋

∥∥∥∥∥1k
k∑

t=1

xtΣ
−1ut

∥∥∥∥∥ = sup
k≥⌊Tδ⌋

∥∥∥∥∥1k
k∑

t=1

S′(In ⊗ zt)Σ
−1ut

∥∥∥∥∥
= sup

k≥⌊Tδ⌋

∥∥∥∥∥S′(Σ−1 ⊗ In)
1

k

k∑
t=1

(In ⊗ zt)ut

∥∥∥∥∥
≤ sup

k≥⌊Tδ⌋

∥∥∥∥∥1k
k∑

t=1

(In ⊗ zt)ut

∥∥∥∥∥∥∥S′(Σ−1 ⊗ In)
∥∥ .

From the FCLT of Lemma A.2 we have for fixed r > 0,

lim
T→∞

Pr

(
sup

k≥⌊Tδ⌋

∥∥∥∥∥1k
k∑

t=1

(In ⊗ zt)ut

∥∥∥∥∥ > rT du−1/2 log1/2 T

)
= 0,

while ∥S′(Σ−1 ⊗ In)∥ =
∑n

i=1(1 + λi)
−1Op(1), where λi i = 1, ..., n, are the eigenvalues of

(Σ0)
−1/2Σ∗(Σ0)

−1/2. Hence,

sup
k≥⌊Tδ⌋

sup
S1,T∩Θ2

L2,T ≤ k

2

(
n∑

i=1

1

1 + λi

)2

(r2T 2du−1 log T ),

which implies

sup
k≥⌊Tδ⌋

sup
S1,T∩Θ̄2

L2,T ≤ k

2

n∑
i=1

1

1 + λi
r2b2T ,

where bT = T du−1/2 log T with the inequality holding with probability arbitrarily close to 1 for

large T . For L1,T we start by considering the term in brackets. Introduce an orthogonal matrix
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U that diagonalizes (I +ΨT )
−1. Then we have,

1

k

k∑
t=1

η′
t((I +ΨT )

−1 − I)ηt = tr

(
diag

{
1

1 + λi
− 1

}(
1

k
U

k∑
t=1

ηtη
′
tU

′

))
.

Because ∥U∥ = 1 it suffices to investigate whether,

∥∥∥∥∥1kU
k∑

t=1

ηtη
′
tU

′ − I

∥∥∥∥∥ ≤ 1

k

∥∥∥∥∥
k∑

t=1

(ηtη
′
t − I)

∥∥∥∥∥ .
Then, for any a > 0 by the FCLT of Lemma A.2 it follows that,

lim
T→∞

Pr

(
sup

k≥⌊Tδ⌋

1

k

k∑
t=1

∥(ηtη
′
t − I)∥ > abT

)
= 0.

Moreover, arguing as Bai et al. (1998) we may show that,

sup
k≥⌊Tδ⌋

sup
S1,T∩Θ2

L1,T ≤ −k

2

[
n∑

i=1

(
log(1 + λi) +

(
1

1 + λi
− 1

)
(1 + sign(λi)abT )

)]
,

with probability arbitrarily close to 1 for large T , where a is a fixed positive number which can

be made arbitrarily small. Combining the preceding two inequalities we can show that,

Pr

(
sup

k≥⌊Tδ⌋
sup

(β,Σ)∈S1,T∩Θ2

L1,T + L2,T > −D log T

)
< ε.

It is now straightforward to see, using similar arguments as in Bai et al. (1998), that one can

show that equation (A.32) holds. Therefore, the claim is shown on the compact parameter space

Θ2. Additionally as in Qu and Perron (2007) we can further conclude that the result is valid

also on an unrestricted parameter space. Therefore, the proof is complete.

Property 12 that follows is different from Qu and Perron (2007) in that we do not assume

that the limit of (hTd2T )/T exists. Instead, as pointed out by Bai (2000), we assume the sufficient

condition that lim infT→∞(hTd
2
T )/T ≥ h > 0.

Property 12. Let hT and dT be positive sequences such that hT is nondecreasing, dT → ∞ and

lim infT→∞(hTd
2
T )/T ≥ h > 0. Define Θ3 = {(β,Σ) : ∥β∥ ≤ p1, λmin(Σ) ≥ p2, λmax(Σ) ≤ p3},

where p1, p2 and p3 are arbitrary constants that satisfy p1 < ∞, 0 < p2 ≤ p3 < ∞. Define

ST = {(β,Σ) : ∥β − β0∥ ≥ T du−dx log T or ∥Σ −Σ0∥ ≥ T−1/2+du log T}. Then, for any ϵ > 0,
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there exists an A > 0, such that when T is large,

Pr

(
sup

k≥AhT

sup
(β,Σ)∈ST∩Θ̄3

L(1, k;β,Σ) > ϵ

)
< ϵ.

Proof. As in Property 3 we only need to look at the behaviour of L2T over S1,T ∩ Θ̄3. The rest

of the proof is as in Bai et al. (1998). We need to show that,

P ( sup
k≥AhT

sup
(β,Σ)∈S1,T∩Θ̄3

L(1, k;β,Σ) > ϵ) < ϵ

or

P ( sup
k≥AhT

sup
(β,Σ)∈S1,T∩Θ̄3

L1T +L2T > ϵ) < ϵ.

Define bT := T−1/2dT . Now all the arguments in the proof of Property 3 still hold. Thus, we

have,

sup
S1,T

L2T =
k

2
(
1

k

k∑
t=1

xtΣ
−1ut)

′(
1

k

k∑
t=1

xtΣ
−1x′

t)
−1(

1

k

k∑
t=1

xtΣ
−1ut),

where

(
k∑

t=1

xtΣ
−1x′

t)
−1 = (

k∑
t=1

S′(I ⊗ zt)Σ
−1(I ⊗ z′

t)S)
−1 = (S′(Σ−1 ⊗

k∑
t=1

ztz
′
t)S)

−1.

From l−1
∑l

t=1 ztz
′
t

a.s.−−→ Qz, for a given ϵ > 0 we can always find a k1 > 0 such that,

P ( sup
k≥k1

∥1
k

k∑
t=1

ztz
′
t −Qz∥ > ϵ) < ϵ.

Define Q△ := k−1
∑k

t=1 ztz
′
t −Qz. Then

(S′(Σ−1 ⊗ 1

k

k∑
t=1

zt z
′
t)S)

−1 − (S′(Σ−1 ⊗Qz)S)
−1

=(S′(Σ−1 ⊗Qz)S + S′(Σ−1 ⊗Q△)S)−1 − (S′(Σ−1 ⊗Qz)S)
−1

= −A−1B(A+B)−1,

where A = S′(Σ−1 ⊗ Qz)S and B = S′(Σ−1 ⊗ Q△)S. Because Σ−1 has uniformly bounded

eigenvalues and k−1
∑k

t=1 ztz
′
t is positive definite for large k, A−1 and B−1 have bounded eigen-

values. Because B is uniformly small, −A−1B(A +B)−1 is uniformly small for large k. This
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is,

(S′(Σ−1 ⊗ k−1
k∑

t=1

ztz
′
t)S)

−1 − (S′(Σ−1 ⊗Qz)S)
−1 a.s.

= o(1) as k → ∞.

Now there exists an M > 0 such that sup(β,Σ)∈S1,T∩Θ̄3
|(S′(Σ−1 ⊗Qz)S)

−1| < M , and we have,

for any ϵ > 0, that there exists an A > 0 such that

P ( sup
k≥AhT

sup
(β,Σ)∈S1,T∩Θ̄3

∥( 1
k

k∑
t=1

xtΣ
−1x′

t)
−1∥ > 2M) < ϵ.

Now,

sup
k≥AhT

∥1
k

k∑
t=1

xtΣ
−1ut∥ = sup

k≥AhT

∥1
k

k∑
t=1

S′(In ⊗ zt)Σ
−1ut∥

≤ sup
k≥AhT

∥1
k

k∑
t=1

(In ⊗ zt)ut∥∥S′(Σ−1 ⊗ In)∥. (A.33)

From Lemma A.1 we have,

P ( sup
k≥AhT

∥1
k

k∑
t=1

(In ⊗ zt)ut∥ > abT ) ≤
C1

AhTa2bT
<

2C1

Aa2h
(A.34)

for some C1 > 0, where the bound can be made arbitrarily small by choosing a large A. For the

second component,

∥S′(Σ−1 ⊗ In)∥ ≤ nC2

n∑
i=1

1

1 + λi
(A.35)

for some 0 < C2 < ∞, which depends on the matrix S. Now, combining (A.33)-(A.35), we have,

for any ϵ > 0 that there exists an Ā > 0, such that with probability no less than 1− ϵ,

sup
k≥ĀhT

sup
(β,Σ)∈S1,T∩Θ̄3

|L2T | <ka2b2Tn
2C2

2M(
n∑

i=1

1

1 + λi
)2 ≤ k

2

n∑
i=1

Ga2b2T
1 + λi

=
k

2

n∑
i=1

γ2b2T
1 + λi

with G = 2n3C2
2M/p2. Because a2 can be made arbitrarily small by choosing a large A, so can

γ2. Hence Property 12 follows.

A.8 Proof of Theorem 5

Proof. The proof of Theorem 5 is very similar to the proof of Theorem 2 only that the limiting

distribution changes. However, for the ease of reading we repeat the whole proof here.
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We introduce some notation first. Let,

Σ̃1,j =
1

Tj

Tj∑
t=1

(yt − x′
atβ̃a − x′

btβ̃b1,j)(yt − x′
atβ̃a − x′

btβ̃b1,j),

be the estimated covariance matrix using the full sample estimate of βa obtained under the null

hypothesis of no change and using the estimate of βb based on data up to the last date of regime

j, defined as

β̃b1,j = (

Tj∑
t=1

xbtΣ̃
−1
1,jx

′
bt)

−1

Tj∑
t=1

xtΣ̃
−1
1,j (yt − x′

atβ̃a).

Additionally,

Σ̂j =
1

Tj − Tj−1

Tj∑
t=Tj−1+1

(yt − x′
atβ̂a − x′

btβ̂bj)(yt − x′
atβ̂a − x′

btβ̂bj)
′,

is the estimate of the covariance matrix of the errors under the alternative hypothesis using the

full sample estimate of βa and using the estimate of βb based on data from regime j only, that

is,

β̂b,j = (

Tj∑
t=Tj−1+1

xbtΣ̂
−1
j x′

bt)
−1

Tj∑
t=Tj−1+1

xtΣ̂
−1
j (yt − x′

atβ̂a). (A.36)

Consider the log-likelihood of a given partition of the sample

LRT (T1, . . . , Tm) =
2

T 2du
log L̂T (T1, . . . , Tm)− 2

T 2du
log L̃T =

T

T 2du
log |Σ̃| − T

T 2du
log |Σ̂|

=
1

T 2du

m∑
j=1

(Tj+1 log |Σ̃1,j+1| − Tj log |Σ̃1,j | − (Tj+1 − Tj) log |Σ̂j+1|)

=:
1

T 2du

m∑
j=1

F j
T .
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Using a second-order Taylor series expansion of each term gives

log |Σ̃1,j+1| = log |Σ0|+ tr((Σ0)−1(Σ̃1,j+1 −Σ0))

− 1

2
tr((Σ0)−1(Σ̃1,j+1 −Σ0)(Σ0)−1(Σ̃1,j+1 −Σ0)) + op(T

−1),

log |Σ̃1,j | = log |Σ0|+ tr((Σ0)−1(Σ̃1,j −Σ0))

− 1

2
tr((Σ0)−1(Σ̃1,j −Σ0)(Σ0)−1(Σ̃1,j −Σ0)) + op(T

−1),

log |Σ̂j+1| = log |Σ0|+ tr((Σ0)−1(Σ̂j+1 −Σ0))

− 1

2
tr((Σ0)−1(Σ̂j+1 −Σ0)(Σ0)−1(Σ̂j+1 −Σ0)) + op(T

−1).

Applying this to the terms F j
T ,

F j
T :=F j

1,T + F j
2,T

=tr(Tj+1(Σ
0)−1(Σ̃1,j+1 −Σ0)− Tj(Σ

0)
−1(Σ̃1,j −Σ0)) (A.37)

− (Tj+1 − Tj)(Σ
0)−1(Σ̂j+1 −Σ0))

− 1

2
tr(Tj+1[(Σ

0)−1(Σ̃1,j+1 −Σ0)]2 (A.38)

− Tj [(Σ
0)−1(Σ̃1,j −Σ0)]2 − (Tj+1 − Tj)[(Σ

0)
−1(Σ̂j+1 −Σ0)]2).

First we consider F j
1,T and write the regression in matrix form. Under the null hypothesis, we

have,

Y = Xaβa +Xbβb +U

with E(UU ′) = IT ⊗Σ0. If only data up to the last date of regime j are included, we have,

Y 1,j = Xa1,jβa +Xb1,jβb1,j +U1,j .

We now define Y d
1,j = (IT ⊗ Σ̃

−1/2
1,j )Y 1,j , W 1,j = (IT ⊗ Σ̃

−1/2
1,j )Xa1,j , Z1,j = (IT ⊗ Σ̃

−1/2
1,j )Xb1,j

and Ud
1,j = (IT ⊗ Σ̃

−1/2
1,j )U1,j . Then, omitting the subscript when the full sample is used, we

have

β̃a = [W ′MZW ]−1W ′MZY
d
, (A.39)

β̃b1,j = (Z ′
1,jZ1,j)

−1Z ′
1,j(Y

d
1,j −W 1,jβ̃a), (A.40)
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where MZ = I −Z(Z ′Z)−1Z ′. The regression equation using only regime (j + 1) is

Y j+1 = Xa,j+1βa +Xb,j+1βb,j+1 +U j+1.

Define Ȳ
d
j+1 = (IT ⊗ Σ̂

−1/2
j+1 )Y j+1, W̄ j+1 = (IT ⊗ Σ̂

−1/2
j+1 )Xa,j+1, Z̄j+1 = (IT ⊗ Σ̂

−1/2
j+1 )Xb,j+1,

Ū
d
j+1 = (IT ⊗ Σ̂

−1/2
j+1 )U j+1, Z̄ = diag(Z̄1, . . . , Z̄m+1). Then, omitting the subscript when the

full sample is used, we have,

β̂a = [W̄
′
M Z̄W̄ ]−1W̄

′
M Z̄Ȳ

d
, (A.41)

β̂b,j+1 = (Z̄
′
j+1Z̄j+1)

−1Z̄
′
j+1(Ȳ

d
j+1 − W̄ j+1β̂a). (A.42)

Note that the choice of the estimate of the covariance matrix in (A.39) to (A.42) will have no

effect provided a consistent one is used. As Qu and Perron (2007) (supplement, p. 25− 26) we

can show for the first component of F j
1,T (or with obvious changes for the second component)

that,

Tj+1 tr((Σ
0)−1Σ̃j+1)

= A′
TW

′
1,j+1MZ1,j+1W 1,j+1AT − Ud′

1,j+1P Z1,j+1U
d
1,j+1

− 2(MZ1,j+1W 1,j+1AT )
′Ud

1,j+1 + U ′
1,j+1(IT ⊗ (Σ0)−1)U1,j+1 + op(1),

where AT = [W ′MZW ]−1W ′MZU
d. For the third component of F j

1,T it can be shown that

(Tj+1 − Tj) tr((Σ
0)−1Σ̂j+1)

=Ā
′
TW̄

′
j+1M Z̄j+1

W̄ j+1ĀT − Ūd′
j+1PZ̄j+1

Ūd
j+1

− 2(M Z̄j+1
W̄ j+1ĀT )

′Ūd
j+1 + U ′

j+1(IT ⊗ (Σ0)−1)Uj+1 + op(1),

where ĀT = [W̄
′
M Z̄W̄ ]−1W̄

′
M Z̄Ū

d. Following the same arguments as in Bai and Per-

ron (1998):p.75, we have plimT→∞ T 1/2ĀT = plimT→∞ T 1/2AT . Hence, all terms that involve

ĀT and AT eventually cancel and

F j
1,T = Ud′

1,jPZ1,jU
d
1,j + Ud′

j+1PZ̄j+1
Ud
j+1 − Ud′

1,j+1PZ1,j+1U
d
1,j+1 + op(1). (A.43)

Now, T−duZ ′
1,jU

d
1,j ⇒ Q

1/2
b Ξ∗

x,u,pb
(λi) and T−1

∑Tj

t=1 xbt(Σ
0)−1x′

bt →p λiQb where Ξ∗
x,u,pb

(λi)
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is a pb vector of zeros and independent integrals of fractional Wiener processes defined on [0, 1]

as given in Theorem 2 and where Qb is the appropriate submatrix of Q that corresponds to∫ 1
0 xbtx

′
btdt. Define the projection matrix P z = Z(Z ′Z)−1Z ′. Hence,

T−2du Ud′
1,j+1P Z1,j+1U

d
1,j+1 ⇒ [Ξ∗

x,u,pb
(λj+1)

′Ξ∗
x,u,pb

(λj+1)]/λj+1. (A.44)

Using similar arguments

T−2du Ud′
1,jP Z1,jU

d
1,j ⇒ [Ξ∗

x,u,pb
(λj)

′Ξ∗
x,u,pb

(λj)]/λj (A.45)

and

T−2du Ud′
j+1P Z̄j+1

Ud
j+1 (A.46)

⇒ (Ξ∗
x,u,pb

(λj+1)−Ξ∗
x,u,pb

(λj))
′(Ξ∗

x,u,pb
(λj+1)−Ξ∗

x,u,pb
(λj))/(λj+1 − λj).

These results imply that the first component in (A.37) has the limit

F j
1,T ⇒

(λjΞ
∗
x,u,pb

(λj+1)− λj+1Ξ
∗
x,u,pb

(λj))
′(λjΞ

∗
x,u,pb

(λj+1)− λj+1Ξ
∗
x,u,pb

(λj))

(λj+1 − λj)λjλj+1
. (A.47)

Consider now the limit of
∑m

j=1 F
j
2,T when changes in Σ0 are allowed. We have

F j
2,T =− 1

2

m∑
j=1

tr(Tj+1((Σ
0)−1Σ̃1,j+1 − I)2)

− Tj((Σ
0)−1Σ̃1,j − I)2 − (Tj+1 − Tj)((Σ

0)−1Σ̂j+1 − I)2.

Let ((Σ0)−1Σ̃1,j+1−I)F ("F" for full sample) be the matrix whose entries are those of ((Σ0)−1Σ̃1,j+1−

I) for the corresponding entries of Σ0 that are not allowed to vary across regimes; the remaining

entries are filled with zeros. Then

[
((Σ0)−1Σ̃1,j+1 − I)F

]
i,k

=
Σik

T

T∑
t=1

(yit − x′
itβ̃)

′(ykt − x′
ktβ̃)− Ii,k,

where Σik is the (i, k) element of (Σ0)−1 and Ii,k is the (i, k) element of I.

Also let ((Σ0)−1Σ̃1,j+1 − I)S ("S" for relevant segments) be the matrix whose entries are

those of ((Σ0)−1Σ̃1,j+1 − I) for the corresponding entries of Σ0 that are allowed to vary across
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regimes, the remaining entries being filled with zeros. Then,

[
((Σ0)−1Σ̃1,j+1 − I)S

]
i,k

=
Σik

Tj+1

Tj+1∑
t=1

(yit − x′
itβ̃)

′(ykt − x′
ktβ̃)− Ii,k.

Note that the entries for ((Σ0)−1Σ̃1,j+1 − I)F are the same for all segments. Define similarly

((Σ0)−1Σ̃1,j − I)F , ((Σ0)−1Σ̃1,j − I)S , ((Σ0)−1Σ̂j+1 − I)F and ((Σ0)−1Σ̂j+1 − I)S . Then,

((Σ0)−1Σ̃1,j+1 − I) = ((Σ0)−1Σ̃1,j+1 − I)F + ((Σ0)−1Σ̃1,j+1 − I)S ,

((Σ0)−1Σ̃1,j − I) = ((Σ0)−1Σ̃1,j − I)F + ((Σ0)−1Σ̃1,j − I)S ,

((Σ0)−1Σ̂j+1 − I) = ((Σ0)−1Σ̂j+1 − I)F + ((Σ0)−1Σ̂j+1 − I)S ,

and, in view of (A.38),

m∑
j=1

F j
2,T =− 1

2
tr(

m∑
j=1

[Tj+1((Σ
0)−1Σ̃1,j+1 − I)S((Σ0)−1Σ̃1,j+1 − I)S

− Tj((Σ
0)−1Σ̃1,j − I)S((Σ0)−1Σ̃1,j − I)S

− (Tj+1 − Tj)((Σ
0)−1Σ̂

S
j+1 − I)S((Σ0)−1Σ̂

S
j+1 − I)S ]) + op(1)

Now, because β̃ − β0 = Op(T
du+dx), we have,

Tj+1

T 2du
((Σ0)−1Σ̃1,j+1 − I)S((Σ0)−1Σ̃1,j+1 − I)S

=
T

Tj+1

T−1/2−du

Tj+1∑
t=1

[(Σ0)−1utu
′
t − I]

ST−1/2−d

Tj+1∑
t=1

[(Σ0)−1utu
′
t − I]

S

+ op(1)

⇒ ξdn(λj+1)
Sξdn(λj+1)

S

λj+1

Tj

T 2du
((Σ0)−1Σ̃1,j − I)S((Σ0)−1Σ̃1,j − I)S

=
T

Tj

T−1/2−du

Tj∑
t=1

[(Σ0)−1utu
′
t − I]

ST−1/2−du

Tj∑
t=1

[(Σ0)−1utu
′
t − I]

S

+ op(1)

⇒ ξdn(λj)
Sξdn(λj)

S

λj
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and

(Tj+1 − Tj)

T 2du
(Σ0)−1Σ̂

S
j+1 − I)S((Σ0)−1Σ̂

S
j+1 − I)S

=
T

Tj+1 − Tj

T−1/2−du

Tj+1∑
t=Tj+1

[(Σ0)−1utu
′
t − I]

S

×

T−1/2−du

Tj+1∑
t=Tj+1

[(Σ0)−1utu
′
t − I]

S

+ op(1)

⇒
(ξ∗D,n(λj+1)− ξ∗D,n(λj))

S(ξ∗D,n(λj+1)− ξ∗D,n(λj))
S

λj+1 − λj

where ξ∗D(·) is an n× n matrix whose elements are

[ξ∗D(·)]i,j =


[ξD(·)]i,j , if di = dj = max1≤k≤n dk,

0, else,

(A.48)

and where ξD is (nonstandard) fractional Brownian motion defined on [0, 1] such that Var(vec(ξD(1))) =

Ω (which follows from Theorem 4.8.2 of Giraitis et al. (2012) p.109). Hence,

m∑
j=1

F j
2,T ⇒− 1

2
tr

(
ξ∗D,n(λj+1)

Sξ∗D,n(λj+1)
S

λj+1
−

ξ∗D,n(λj)
Sξ∗D,n(λj)

S

λj

+
(ξ∗D,n(λj+1)− ξ∗D,n(λj))

S(ξ∗D,n(λj+1)− ξ∗D,n(λj))
S

λj+1 − λj

)
=− 1

2

[
vec(ξ∗D,n(λj+1)

S)′ vec(ξ∗D,n(λj+1)
S)

λj+1

−
vec(ξ∗D,n(λj)

S)′ vec(ξ∗D,n(λj)
S)

λj

×
(
vec(ξ∗D,n(λj+1)

S)− vec(ξ∗D,n(λj)
S)
)′

×
(vec(ξ∗D,n(λj+1)

S)− vec(ξ∗D,n(λj)
S)

(λi+1 − λi)

]
(A.49)

using the fact that tr(AA) = vec(A)′ vec(A) for a symmetric matrix A. Now let H be the

matrix that selects the elements of vec(Σ0) that are allowed to change. Then,

vec(ξ∗D,n(λj+1)
S)′ vec(ξ∗D,n(λj+1)

S) = vec(ξ∗D,n(λj+1))
′H ′H vec(ξ∗D,n(λj+1))

d
= W ∗

D,n∗
b
(λj+1)

′HΩH ′W ∗
D,n∗

b
(λj+1),
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where W ∗
D,n∗

b
is an n∗

b vector of processes as defined in Theorem 2. Hence, we have

m∑
j=1

F j
2,T ⇒− 1

2

[W ∗
D,n∗

b
(λj+1)

′H ′ΩHW ∗
D,n∗

b
(λj+1)

λj+1
−

W ∗
D,n∗

b
(λj)

′H ′ΩHW ∗
D,n∗

b
(λj)

λj

−
(W ∗

D,n∗
b
(λj+1)−W ∗

D,n∗
b
(λj))

′H ′ΩH(W ∗
D,n∗

b
(λj+1)−W ∗

D,n∗
b
(λj)

λj+1 − λj

]
=(λjW

∗
D,n∗

b
(λj+1)− λj+1W

∗
D,n∗

b
(λj))

′H ′ΩH

× (λjW
∗
D,n∗

b
(λj+1)− λj+1W

∗
D,n∗

b
(λj))/(λjλj+1(λj+1 − λj)). (A.50)

By combining equations (A.47) and (A.50) we have shown the limiting distribution of our test.
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