
Block Whittle Estimation of Time Varying Stochastic
Regression Models with Long Memory∗

Chris Toumping Fotso1 and Philipp Sibbertsen1

1Leibniz University Hannover

November 11, 2024

Abstract

This paper proposes an estimator that accounts for time variation in a regression relationship
with stochastic regressors exhibiting long-range dependence, covering weak fractional cointegra-
tion as a special case. An interesting application of this estimator is its ability to handle situations
where the regression coefficient changes abruptly. The parametric formulation of this estimator
is introduced using the Block-Whittle-based estimation. We analyze the asymptotic properties of
this estimator, including consistency and asymptotic normality. Furthermore, we examine the fi-
nite sample behavior of the estimator through Monte Carlo simulations. Additionally, we consider
a real-life application to demonstrate its advantages over the constant case.

1 Introduction

Linear regression is a widely used technique across various scientific fields. Its popularity comes from
its ability to model and estimate the strength and the direction of the relationship between two or more
variables. A standard regression model between two variables, 𝑌 and 𝑋 is defined as:

𝑌𝑡 = 𝛽𝑋𝑡 + 𝜀𝑡 (1)

where 𝑌𝑡 represents the response variable, 𝑋𝑡 is the predictor, and 𝜀𝑡 is the errors. Typically, a regression
model relies on six key assumptions, that must be satisfied. Among these, the regressor 𝑋𝑡 must be
nonstochastic, and the error term should follow a normal distribution. Additionally, it assumes that
the relationship between the response variable 𝑌𝑡 and the regressor 𝑋𝑡 remains constant over time.
However, this condition is often violated in practice, especially when considering structural breaks and
regime shifts. For instance, Brown et al. (1997) modeled the change of house prices in the United
Kingdom using time-varying coefficients, resulting in more accurate forecasts than those obtained with
constant parameters.

The survey of stochastic parameter regression of Rosenberg (1973) highlights the importance and
the advantages of considering stochastic parameter regression models. For instance, Newbold and Bos
(1985) developed a stochastic regression model later generalized by Robinson and Hidalgo (1997) to
allow the error 𝜀𝑡 to exhibit long memory. Furthermore, Yajima (1991) explored the properties of the
linear least squares estimator in the context of regression with long-memory stationary errors. However,
Yajima’s study confined the long memory to the errors and did not allow the regressors to be stochastic.
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In this paper, we allow both the response 𝑌𝑡 and the regressor 𝑋𝑡 to be stochastic with the same
long memory, which can also be time-varying, denoted as 𝛿1. The error term 𝜀𝑡 also exhibits long
memory, denoted as 𝛿2, where 𝛿2 ≤ 𝛿1 and the regression coefficient 𝛽𝑡 is time-varying. Particularly,
when 𝛿2 < 𝛿1, (1) represents a typical fractional cointegration relationship (Engle and Granger, 1987).
Fractional cointegration has been applied to various fields of economics, such as exchange rate dynamics
(Baillie and Bollerslev, 1994; Cheung and Lai, 1993) and financial volatility (da Silva and Robinson,
2008; Christensen and Nielsen, 2002). Additionally, recent research has explored its applications in the
field of climate change (Carlini et al., 2023; Yaya et al., 2023). Some studies have addressed time
variation in standard cointegrating relationships, such as the work by Park and Park (2015), which
applied this concept to exchange rate predictability in Korea, and Kapetanios et al. (2020), which
focused on the UK’s great ratios. To the best of our knowledge, there has been limited research
specifically on time-varying fractional cointegration.

Indeed, the concept of time-varying dependence models is a well-known problem in time series anal-
ysis. Priestley (1965) first discussed evolutionary spectral techniques that is, time-dependent spectral
functions. Subsequently, Dahlhaus (1996, 1997) developed locally stationary processes which have
gained significant attention from researchers over the years (Dahlhaus, 2000; Dahlhaus and Polonik,
2009; Beran, 2009, etc.). Recently, Palma and Olea (2010a) addressed locally stationary Gaussian
processes that exhibit long-range dependence based, on the block-Whittle based estimation technique
proposed in Dahlhaus (1997). Thus, this paper builds on their work to propose a new framework for
time-varying stochastic regression parameter between (locally) stationary times series, and we analyze
its asymptotic properties. In particular, we also show that the sigmoid function can be used, to estimate
abrupt changes in the relationship using the estimator.

The remainder of this paper is organized as follows. Section 2 provides a reminder about the
concept block Whittle-based estimation for long memory locally stationary process and also the model
of time-varying fractional cointegration. Next, Section 3 introduces the new block Whittle function,
states several important assumptions that will be used to investigate the large sample properties of
the estimator, and presents the main results for consistency and asymptotic normality. Section 4
shows the finite sample behavior of the estimator through Monte Carlo simulation. Finally, Section 5
demonstrates a real-life application of our estimator, and the conclusion of the paper is presented in
Section 6. Technical lemmas and all proofs can be found in the appendices A.2 and A.1 respectively.

2 Preliminaries and fractional cointegration model

2.1 Regression model

Let’s consider a sequence of Gaussian bivariate stochastic processes 𝑍𝑡 ,𝑇 = (𝑌𝑡 ,𝑇 , 𝑋𝑡 ,𝑇)
′ (𝑡 = 1, . . . , 𝑇)

locally stationary, having the same long memory parameter 𝛿1 < 0.5 1 and each defined by the spectral
representation:

𝑌𝑡 =

∫𝜋

−𝜋
𝐴0
𝑡 ,𝑇(𝜆)𝑒

𝑖𝜆𝑡𝑑𝜁1(𝜆), (2)

𝑋𝑡 =

∫𝜋

−𝜋
𝐵0𝑡 ,𝑇(𝜆)𝑒

𝑖𝜆𝑡𝑑𝜁2(𝜆) (3)

for 𝑡 = 1, . . . , 𝑇, where (𝜁1(𝜆), 𝜁2(𝜆)) is a Brownian motion on [−𝜋,𝜋] with covariance matrix assumed
without loss of generality to be Σ = 1. So, there exists a constant 𝐾 and 2𝜋−periodic functions

𝐴, 𝐵 : (0, 1] × R → C with 𝐴(𝑢,𝜆) = 𝐴(𝑢,−𝜆), 𝐵(𝑢,𝜆) = 𝐵(𝑢,−𝜆) and

sup
𝑡 ,𝜆

����𝐴0
𝑡 ,𝑇(𝜆) − 𝐴

(
𝑡

𝑇
,𝜆

)���� ≤ 𝐾𝑇−1, sup
𝑡 ,𝜆

����𝐵0𝑡 ,𝑇(𝜆) − 𝐵 (
𝑡

𝑇
,𝜆

)���� ≤ 𝐾𝑇−1,

1Our results remain valid even if the long memory is not constant.
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for all 𝑇 ∈ N.
If 𝑌𝑡 and 𝑋𝑡 exhibit a time-varying relationship in regression, it suggests that there exists 𝛽 (𝑡/𝑇)

and a process 𝜀𝑡 with long memory parameter 𝛿2 ≤ 𝛿1 so that:

𝑌𝑡 − 𝛽

(
𝑡

𝑇

)
𝑋𝑡 = 𝜀𝑡 . (4)

If one considers by

𝐵𝑡 =

(
1,−𝛽

(
𝑡

𝑇

))′
, (5)

then (4) can be written as
𝐵′𝑡𝑍𝑡 = 𝜀𝑡 , (6)

and the spectral density and the periodogram of 𝜀𝑡 are equal to:

𝑓𝜀(𝑡/𝑇,𝜆) = 𝐵′𝑡 𝑓𝑍(𝜆)𝐵𝑡 = 𝑓𝛿2(𝑡/𝑇,𝜆) (7)

𝐼𝜀(𝑡/𝑇,𝜆) = 𝐵′𝑡 𝐼𝑍(𝜆)𝐵𝑡 (8)

2.2 Block Whittle-based estimation

The Block Whittle likelihood function, which is a generalization of the standard likelihood (Dahlhaus,
2000), was first introduced by Dahlhaus (1997) for locally stationary processes.

A process 𝜀𝑡 ,𝑇 with transfer function 𝐺0 is locally stationary if there exists a representation:

𝜀𝑡 ,𝑇 =

∫𝜋

−𝜋
𝐺0
𝑡 ,𝑇(𝜆)𝑒

𝑖𝜆𝑡𝑑𝜁(𝜆), (9)

for 𝑡 = 1 . . . 𝑇, where 𝜁(𝜆) is a Brownian motion on [−𝜋,𝜋] and there exists a constant 𝐾 and

2𝜋−periodic functions 𝐺 : (0, 1] × R → C with 𝐺(𝑢,𝜆) = 𝐺(𝑢,−𝜆) such that

sup
𝑡 ,𝜆

����𝐺0
𝑡 ,𝑇(𝜆) − 𝐺

(
𝑡

𝑇
,𝜆

)���� ≤ 𝐾𝑇−1,

for all 𝑇 ∈ N.
If we let 𝜃 ∈ Θ be a parameter vector specifying model (9) where the parameter space Θ is a subset

of a finite-dimensional Euclidean space. Given a sample {𝜀1, . . . , 𝜀𝑇} of (9), we can estimate 𝜃 by
minimizing the Block Whittle log-likelihood function:

ℒ𝑇(𝜃) =
1

4𝜋
1

𝑀

𝑀∑
𝑗=1

∫𝜋

−𝜋

{
log 𝑓𝜃(𝑢𝑗 ,𝜆) +

𝐼𝑁(𝑢𝑗 ,𝜆)

𝑓𝜃(𝑢𝑗 ,𝜆)

}
𝑑𝜆, (10)

where 𝐼𝑁(𝑢,𝜆) is the local tapered periodogram over a segment of length 𝑁 with midpoint [𝑢𝑇] defined
as

𝐼𝑁(𝑢,𝜆) =
|𝐷𝑁(𝑢,𝜆)|2
2𝜋𝐻2,𝑁(0)

, (11)

with

𝐷𝑁(𝑢,𝜆) =
𝑁−1∑
𝑠=0

ℎ
( 𝑠
𝑛

)
𝜀[𝑢𝑇]−𝑁/2+𝑠+1𝑒

−𝑖𝜆𝑠 , 𝐻𝑘,𝑁 =
𝑁−1∑
𝑠=0

ℎ
( 𝑠
𝑛

) 𝑘
𝑒−𝑖𝜆𝑠 ,

𝑇 = 𝑆(𝑀 − 1) + 𝑁 , 𝑢𝑗 = 𝑡 𝑗/𝑇, 𝑡 𝑗 = 𝑆(𝑗 − 1) + 𝑁/2, 𝑗 = 1, . . . , 𝑀 and ℎ(·) is a data taper and it
helps to reduce the bias due to nonstationarity on a segment.
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3 Estimation procedure, assumptions and main results

3.1 Estimation and assumptions

Let’s consider 2 samples {𝑌1, . . . , 𝑌𝑇} and {𝑋1, . . . , 𝑋𝑇} of the processes (2) and (3). Let 𝜃 ∈ Θ also
be a parameter vector specifying respectively 𝛽 (𝑡/𝑇) in model (6) where the parameter space Θ is a
subset of a finite-dimensional Euclidean space. The spectral density and the periodogram of 𝜀𝑡 are now
equal to:

𝑓𝜃(𝑢,𝜆) = 𝐵𝜃(𝑢)
′ 𝑓𝑍(𝑢,𝜆)𝐵𝜃(𝑢) = 𝑓𝛿2(𝜆), (12)

𝐼𝜃𝜀 (𝑢,𝜆) = 𝐵𝜃(𝑢)
′𝐼𝑍(𝜆)𝐵𝜃(𝑢), (13)

with 𝐵𝜃(𝑢) = (1,−𝛽𝜃(𝑢))′ and 𝑢 = 𝑡/𝑇.
If we replace the new spectral density (12) and the periodogram (13) in the original block-Whittle

likelihood (10) will get a new estimator of 𝜃 and 𝛿2 given by the following function:

ℒ𝑇(𝜃, 𝛿2) =
1

4𝜋
1

𝑀

𝑀∑
𝑗=1

∫𝜋

−𝜋

{
log 𝑓𝛿2(𝑢,𝜆) +

𝐼𝜃
𝑁
(𝑢𝑗 ,𝜆)

𝑓𝛿2(𝑢,𝜆)

}
𝑑𝜆, (14)

where

𝐼𝜃𝑁(𝑢,𝜆) = 𝐵𝜃(𝑢)
′𝐼𝑍𝑁(𝑢,𝜆)𝐵𝜃(𝑢), (15)

with 𝐵𝜃(𝑢) = (1,−𝛽𝜃(𝑢))′, and

𝐼𝑍𝑁(𝑢,𝜆) =
©«
𝐼𝑌
𝑁
(𝑢,𝜆) 𝐼𝑌𝑋

𝑁
(𝑢,𝜆)

𝐼𝑋𝑌
𝑁

(𝑢,𝜆) 𝐼𝑋
𝑁
(𝑢,𝜆)

ª®¬ , (16)

𝑓𝑍(𝑢,𝜆) =
©«
𝑓𝑌(𝑢,𝜆) 𝑓𝑌𝑋(𝑢,𝜆)

𝑓𝑋𝑌(𝑢,𝜆) 𝑓𝑋(𝑢,𝜆)

ª®¬ , (17)

𝐼
(·,·)
𝑁

(𝑢,𝜆) is the tapered periodogram and it’s defined by

𝐼𝑌𝑋𝑁 (𝑢,𝜆) =
𝐷1
𝑁
(𝑢,𝜆)𝐷2

𝑁
(𝑢,𝜆)

2𝜋𝐻2,𝑁(0)
= 𝐼𝑋𝑌

𝑁
(𝑢,𝜆), (18)

with

𝐷1
𝑁(𝑢,𝜆) =

𝑁−1∑
𝑠=0

ℎ
( 𝑠
𝑛

)
𝑌[𝑢𝑇]−𝑁/2+𝑠+1,𝑇 𝑒

−𝑖𝜆𝑠 ,

𝐷2
𝑁(𝑢,𝜆) =

𝑁−1∑
𝑠=0

ℎ
( 𝑠
𝑛

)
𝑋[𝑢𝑇]−𝑁/2+𝑠+1,𝑇 𝑒

−𝑖𝜆𝑠 .

Note that we only considered Gaussian time series in this paper. However, as shown by Chan and
Palma (2020), the Block Whittle-based estimation can be applied to non-Gaussian time series with
additional assumptions on the higher-order cumulants of the process.

We introduce the following assumptions. The first assumption concerns the spectral density of 𝑍
and 𝜀. The second assumption pertains to the tapering function and the cointegrating function 𝛽(𝑢).
The last assumption is on the block sampling scheme.

A1. 𝑍 is Gaussian and its spectral density matrix 𝑓𝑍(𝜆) satisfies:

𝑓𝑍(𝑢,𝜆) ∼ 𝐶 𝑓𝑍(𝜃, 𝑢)|𝜆|−2𝛿1 , as |𝜆|→ 0,
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where 𝐶 𝑓𝑍(𝜃, 𝑢) is a 2 by 2 matrix. Also, 𝑓𝛿2(𝑢,𝜆) satisfies:

𝑓𝛿2(𝑢,𝜆) ∼ 𝐶(𝜃, 𝑢)|𝜆|−2𝛿2 , as |𝜆|→ 0,

There is an integrable function 𝑔(𝜆) such that |∇ log 𝑓𝜃(𝑢,𝜆)|≤ 𝑔(𝜆) for all 𝜃 ∈ Θ, 𝑢 ∈ [0, 1]
and 𝜆 ∈ [−𝜋,𝜋]. The functions 𝐴(𝜆), 𝐵(𝜆), 𝐺(𝜆) satisfy:

∫𝜋
−𝜋 𝐴(𝑢,𝜆)𝐵(𝑣,−𝜆) exp(𝑖𝑘𝜆) ∼ 𝐶(𝑢, 𝑣)𝑘2𝛿1−1,∫𝜋
−𝜋 𝐴(𝑢,𝜆)𝐴(𝑣,−𝜆) exp(𝑖𝑘𝜆) ∼ 𝐶(𝑢, 𝑣)𝑘2𝛿1−1,∫𝜋
−𝜋 𝐵(𝑢,𝜆)𝐵(𝑣,−𝜆) exp(𝑖𝑘𝜆) ∼ 𝐶(𝑢, 𝑣)𝑘2𝛿1−1,∫𝜋
−𝜋 𝐺(𝑢,𝜆)𝐺(𝑣,−𝜆) exp(𝑖𝑘𝜆) ∼ 𝐶(𝑢, 𝑣)𝑘2𝛿2−1,

as 𝑘 → ∞, where |𝐶(𝑢, 𝑣)|≤ 𝐾. The function 𝑓𝛿2(𝑢,𝜆)
−1 is twice differentiable with respect to

𝛿2 and 𝜆.

A2. The data taper ℎ(𝑢) is a positive, bounded function for 𝑢 ∈ [0, 1] and symmetric around 1
2 with

bounded derivative. We also assume that 𝛽 : [0, 1] → R is differentiable with uniformly bounded
derivatives.

A3. The sample size 𝑇 and the subdivisions integers 𝑁, 𝑆 and 𝑀 tend to infinity satisfying:

𝑆

𝑁
→ 0,

√
𝑇 log2 𝑁

𝑁
→ 0,

√
𝑇

𝑀
→ 0,

𝑁3 log2 𝑁

𝑇2
→ 0.

3.2 Main results

The asymptotic properties of �̂�2 have already been established in Theorems 2.1, 2.2 and 2.3 of Palma

and Olea (2010a). In this section, we explore the large sample properties of 𝜃 including consistency
and normality.

Theorem 1 (Consistency). Let 𝜃0 and 𝛿20 be the true values of the parameters 𝜃 and 𝛿2. Under

assumptions A1-A3, the estimators 𝜃𝑇 and �̂�2 satisfy 𝜃𝑇 → 𝜃0, and �̂�2 → 𝛿20 in probability, as
𝑇 → ∞.

Theorem 2 (Normality). Let 𝜃0 be the true value of the parameter 𝜃. If assumptions A1-A3 hold,

then the estimators 𝜃𝑇 satisfies√
𝑇1−2(𝛿1−𝛿2)

(
𝜃 − 𝜃0

)
𝑑−−−→ 𝑁 [0,Λ(𝜃0)

−1𝑉(𝜃0)Λ(𝜃0)
−1], 𝑎𝑠 𝑇 → ∞,

where
𝑑−−−→ denotes the convergence in distribution and Λ is given by

Λ(𝜃0) =
1

4𝜋

∫1

0

∫𝜋

−𝜋
∇2 𝑓𝜃0(𝑢,𝜆) 𝑓

−1
𝛿20

(𝑢,𝜆)𝑑𝜆, (19)

and

𝑉(𝜃0) =
1

4𝜋

∫1

0

∫𝜋

−𝜋

[
(∇ 𝑓𝜃0(𝑢,𝜆))2 + 2∇𝛽𝜃0(𝑢,𝜆)𝛽2𝜃0(𝑢,𝜆)

× 𝑓𝑌𝑋(𝑢,𝜆) 𝑓𝑌(𝑢,𝜆))
]
( 𝑓 −1𝛿20

(𝑢,𝜆))2 (20)
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4 Simulations

In this section, we report some simulations to examine the finite sample performance of the estimator.
We conducted some Monte Carlo experiments for the ARFIMA model. Specifically, 𝑌𝑡 and 𝑋𝑡 are both
ARFIMA(0, 𝛿1, 0) processes with long memory 𝛿1 = 0.35, while 𝜀𝑡 is also ARFIMA(0, 𝛿2, 0) with
𝛿2 = 0.1. Two cases are investigated for the cointegrating coefficient 𝛽: one representing an abrupt
change and the other representing a smooth change, i.e.

𝛽(𝑢) =

{
𝛽0 for 𝑢 ≤ 𝑢0
𝛽1 for 𝑢 > 𝑢0

(21)

𝛽(𝑢) = 𝛽1𝑢 + 𝛽0, (22)

with 𝑢0 = {64/𝑇, 200/𝑇}. Due to assumption A2, 𝛽(𝑢) has to be a continuous function. Therefore,
we approximated (21) by a continuous function using the sigmoid function as follows:

𝛽(𝑢) = 𝛽0 + (𝛽1 − 𝛽0)Sigmoid

(
(𝑢 − 𝑢0)
0.00005

)
, (23)

where

Sigmoid(x) =
1

1 + 𝑒−𝑥
.

Figure 1 shows the approximation of the function (21) for 𝑢0 = 200/512. It demonstrates that (23)
provides a good approximation, which can be effectively used in practice.

Figure 1: Approximation of (21) with Sigmoid Function.

All the simulations were carried out using the Constrained Optimization BY Linear Approximations
(COBYLA) algorithm from the NLopt library, an open-source library for nonlinear optimization. This
algorithm proved to be the most effective for optimizing 𝛽 in the form of (23). The Figures below

display the contour curves for the empirical mean squared error (MSE) for the estimator (�̂�, �̂�2). The

MSE is defined in this case as the average of
(�̂�, �̂�2) − (𝛽, 𝛿2)

2 over 100 replications of (�̂�, �̂�2). In

these figures, the aim is to select the optimal bandwidth parameters 𝑁 and 𝑆 that result in the smallest
MSE for sample sizes 𝑇 = 512 and 𝑇 = 1024, respectively. The darkest regions represent minimal
empirical MSE, while clearer regions indicate greater MSE values.
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Figure 2 shows the contour curves for 𝑢0 = 200/𝑇, 𝛽0 = 1, 𝛽1 = 2 and 𝑇 = 512. This plot indicates
that the region with minimal empirical MSE is approximately at 𝑁 ≈ 60 and 𝑆 ≈ 16 for 𝑇 = 512. This
same region was observed for 𝑇 = 1024.

Figure 2: Contour curves of the empirical MSE with sample size T=512

We reported results from the Monte Carlo simulations for several parameter values based on 1000
replications in Table 1, using the optimal values we found.

𝑇 = 512, 𝑁 = 60, 𝑆 = 16

Parameters Estimates Estimated SD

𝛽0 𝛽1 𝛿2 �̂�0 �̂�1 �̂�2 �̂�(�̂�0) �̂�(�̂�1) �̂�(�̂�2)

1 2 0.1 1.01 1.985 0.11 0.067 0.053 0.041
2 4 0.1 2.02 3.97 0.126 0.073 0.055 0.048
0.5 -0.5 0.1 0.496 -0.491 0.124 0.068 0.053 0.042

𝑇 = 1024, 𝑁 = 60, 𝑆 = 16

Parameters Estimates Estimated SD

𝛽0 𝛽1 𝛿2 �̂�0 �̂�1 �̂�2 �̂�(�̂�0) �̂�(�̂�1) �̂�(�̂�2)

1 2 0.1 1.009 1.993 0.106 0.065 0.033 0.029
2 4 0.1 2.02 3.99 0.117 0.072 0.033 0.031
0.5 -0.5 0.1 0.499 -0.497 0.115 0.063 0.031 0.029

Table 1: Estimation for 𝑢0 =
200
𝑇 , 𝛽(𝑢) = 𝛽0 + (𝛽1 − 𝛽0)Sigmoid

(
(𝑢−𝑢0)
0.00005

)
.

In addition, we also reported the simulations results in Table 2 for 𝑢0 = 64/𝑇 across different
samples sizes.
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𝑇 = 512, 𝑁 = 40, 𝑆 = 16

Parameters Estimates Estimated SD

𝛽0 𝛽1 𝛿2 �̂�0 �̂�1 �̂�2 �̂�(�̂�0) �̂�(�̂�1) �̂�(�̂�2)

1 2 0.1 1.003 1.989 0.107 0.067 0.137 0.044
2 4 0.1 2.002 3.98 0.119 0.136 0.0458 0.0494
0.5 -0.5 0.1 0.5 -0.495 0.121 0.126 0.045 0.0438

𝑇 = 1024, 𝑁 = 40, 𝑆 = 16

Parameters Estimates Estimated SD

𝛽0 𝛽1 𝛿2 �̂�0 �̂�1 �̂�2 �̂�(�̂�0) �̂�(�̂�1) �̂�(�̂�2)

1 2 0.1 1.002 1.996 0.107 0.134 0.03 0.031
2 4 0.1 2 3.99 0.116 0.134 0.032 0.033
0.5 -0.5 0.1 0.507 -0.499 0.111 0.121 0.029 0.03

Table 2: Estimation for 𝑢0 =
64
𝑇 , 𝛽(𝑢) = 𝛽0 + (𝛽1 − 𝛽0)Sigmoid

(
(𝑢−𝑢0)
0.00005

)
.

For the smooth changes (22), we found that the region with minimal empirical MSE is approximately
at 𝑁 ≈ 80 and 𝑆 ≈ 16 for 𝑇 = 512. The Table 3 below reports the Monte Carlo simulations with 1000
replications for this case.

𝑇 = 512, 𝑁 = 80, 𝑆 = 16

Parameters Estimates Estimated SD

𝛽0 𝛽1 𝛿2 �̂�0 �̂�1 �̂�2 �̂�(�̂�0) �̂�(�̂�1) �̂�(�̂�2)

0.5 2 0.1 0.509 1.994 0.099 0.092 0.164 0.041
-0.4 2 0.1 -0.4 2.002 0.113 0.09 0.160 0.040
1 0.75 0.1 0.991 0.758 0.105 0.093 0.168 0.041

𝑇 = 1024, 𝑁 = 80, 𝑆 = 16

Parameters Estimates Estimated SD

𝛽0 𝛽1 𝛿2 �̂�0 �̂�1 �̂�2 �̂�(�̂�0) �̂�(�̂�1) �̂�(�̂�2)

0.5 2 0.1 0.499 2.002 0.102 0.064 0.113 0.027
-0.4 2 0.1 -0.398 1.998 0.105 0.063 0.109 0.029
1 0.75 0.1 0.995 0.756 0.101 0.059 0.106 0.028

Table 3: Estimation for 𝛽(𝑢) = 𝛽0 + 𝛽1 ∗ 𝑢.

Furthermore, it is also possible to extend the approximation expression (23) to account for more
than one changing point. For example, if we consider two changing points, 𝑢0 and 𝑢1, as follows:

𝛽(𝑢) =


𝛽0 for 𝑢 ≤ 𝑢0
𝛽1 for 𝑢0 ≤ 𝑢 < 𝑢1
𝛽2 for 𝑢 ≤ 𝑢1.

(24)

Then, this can be approximated using:

𝛽(𝑢) = 𝛽0 + (𝛽1 − 𝛽0)Sigmoid

(
(𝑢 − 𝑢0)
0.00005

)
+ (𝛽2 − 𝛽1)Sigmoid

(
(𝑢 − 𝑢1)
0.00005

)
, (25)

Figure 3 illustrates this approximation with 𝑇 = 512, 𝛽0 = 1, 𝛽1 = 2 and 𝛽2 = 0.5, where the changing
points are 𝑢0 = 64/𝑇 and 𝑢1 = 200/𝑇.
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Figure 3: Approximation of (24) with Sigmoid Function.

We conducted simulations for this case using the same procedure as explained earlier. Our findings
indicate that 𝑁 = 40 and 𝑆 = 6 are the optimal bandwidth values for this scenario. Table 4 presents
then results of Monte Carlo simulations with 1000 replications:

𝑇 = 512, 𝑁 = 40, 𝑆 = 6

Parameters Estimates Estimated SD

𝛽0 𝛽1 𝛽2 𝛿2 �̂�0 �̂�1 �̂�2 �̂�2 �̂�(�̂�0) �̂�(�̂�1) �̂�(�̂�2) �̂�(�̂�2)

1 2 0.5 0.1 1.038 1.97 0.506 0.122 0.141 0.080 0.056 0.045
4 2 -0.5 0.1 3.923 2.024 -0.492 0.125 0.149 0.084 0.057 0.052

-0.75 -0.3 2 0.1 -0.73 -0.294 1.993 0.12 0.143 0.081 0.059 0.049

𝑇 = 1024, 𝑁 = 40, 𝑆 = 6

Parameters Estimates Estimated SD

𝛽0 𝛽1 𝛽2 𝛿2 �̂�0 �̂�1 �̂�2 �̂�2 �̂�(�̂�0) �̂�(�̂�1) �̂�(�̂�2) �̂�(�̂�2)

1 2 0.5 0.1 1.038 1.97 0.506 0.122 0.141 0.080 0.056 0.045
4 2 -0.5 0.1 3.923 2.024 -0.492 0.125 0.149 0.084 0.057 0.052

-0.75 -0.3 2 0.1 -0.73 -0.294 1.997 0.115 0.139 0.079 0.033 0.032

Table 4: Estimation for 𝑢0 = 60
𝑇 , 𝑢0 = 200

𝑇 , 𝛽(𝑢) = 𝛽0 + (𝛽1 − 𝛽0)Sigmoid
(
(𝑢−𝑢0)
0.00005

)
+ (𝛽2 −

𝛽1)Sigmoid
(
(𝑢−𝑢1)
0.00005

)
.

Finally, all the simulation tables provided in this section demonstrate that the estimator exhibits very
good finite sample performance, as the estimated parameters are close to their true values. Additional
simulations with other model specifications can be found in the appendix A.3.

5 Empirical Application

We consider an application using high-frequency data of the DAX (Deutscher Aktienindex) stock index
collected from the Thomson Reuters Tick History (TRTH) database. The data spans from January
2, 2014, to June 27, 2023, providing 𝑇 = 2043 daily observations. We computed daily realized
correlations using 51 intra-day returns sampled at a frequency of 10 minutes. For this analysis, we
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selected three stocks: Adidas AG (ADS.DE), BASF (Baden Aniline and Soda Factory) SE (BAS.DE)
and Bayer AG (BAYN.DE). These three companies are significant players in the German markets and
have interconnected relationships. BASF and Bayer belongs both to the chemical industry one of the
main industrial sectors in Germany and Adidas as a counterpart producing sports wear. Further, BASF
has supported Adidas in developing the performance of its running shoes through innovative materials
for the past 20 years. In addition, since 2018, BASF has acquired several businesses and assets from
Bayer.

The realized correlations were calculated using realized covariance matrices, constructed using the
methodology outlined in Chiriac and Voev (2011). After computing the correlations, we applied the
Fisher-z-transformation, which redefined the correlations on the set of real numbers, removing the

original constraint of being bounded within the interval [−1, 1]. More precisely, if 𝑅𝐶
𝑖 , 𝑗

𝑡 denotes the
realized correlation between stocks 𝑖 and 𝑗 at time 𝑡, then the Fisher transformed realized correlation
is defined by: �

𝑅𝐶
𝑖 , 𝑗

𝑡 =
1

2
log

(
1 + 𝑅𝐶

𝑖 , 𝑗

𝑡

1 − 𝑅𝐶 𝑖 , 𝑗𝑡

)
We used BASF SE as the reference series to compute the realized correlation, as illustrated in Figure

4.

Figure 4: Realized correlations.

The regression model that we will estimate is presented as follows:

𝑅𝐶𝑡
𝐵𝐴𝑌𝑁,𝐵𝐴𝑆

= 𝛽𝑡𝑅𝐶𝑡
𝐴𝐷𝑆,𝐵𝐴𝑆

+ 𝜀𝑡 . (26)

Applying the exact local Whittle estimator (ELW) with default bandwidth we get that

𝑅𝐶𝑡
𝐵𝐴𝑌𝑁,𝐵𝐴𝑆

has a memory parameter of 0.36, while 𝑅𝐶𝑡
𝐴𝐷𝑆,𝐵𝐴𝑆

shows a memory parameter of 0.41.
We applied our estimator for both the constant and abrupt change scenarios. For the constant case,

we explored various values of 𝑁 and 𝑆, ultimately selecting 𝑁 = 600 and 𝑆 = 360. In contrast, for the
time-varying case, we opted for 𝑁 = 535 and 𝑆 = 400. In the constant case, we found �̂� = 0.44 and

�̂� = 0.24. Subsequently, we plotted the residuals 𝑅𝐶𝑡
𝐵𝐴𝑌𝑁,𝐵𝐴𝑆 − �̂�𝑡𝑅𝐶𝑡

𝐴𝐷𝑆,𝐵𝐴𝑆
, depicted in Figure 5.
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Figure 5: Residuals.

This visualization helped identify 𝑢0 = 2080/𝑇 as the change point for the abrupt change case
corresponding to the date of March 23, 2022. For this latter case, we obtained �̂�0 = 0.49, �̂�1 = 0.09

and �̂� = 0.198.
We also compared our results with those obtained using the narrow band frequency domain least

squares (FDLS) method to estimate the cointegration coefficient and the exact local Whittle (ELW)

to estimate the long memory parameter denoted as �̂�𝐸𝐿𝑊 . Table 5 shows the results for all these

3 scenarios. We also used the ELW to estimate �̂�𝐸𝐿𝑊 with the coefficient we computed from our
estimator. This table shows that our estimator provided a new cointegrating relationship, and the one
from the time-varying case led to a smaller long memory.

N S �̂�0 �̂�1 �̂� �̂�𝐸𝐿𝑊

Constant 600 400 0.44 - 0.242 0.344
Time-Varying 535 360 0.49 0.09 0.198 0.298
FDLS - - 0.69 - - 0.34

Table 5: Estimation of the coefficients

The new residuals from the abrupt changes case in Figure 6 appear also to be more stable and
stationary compared to those from the constant case.
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Figure 6: Realized correlations.

In March 2022, significant events occurred for these companies, impacting their stock prices and
therefore the realized correlations as well. Our results suggest that after March 23, 2022, the cointe-
grating coefficient between both variables became small. If we had used constant cointegration, these
changes would not have been captured.

6 Conclusion

In this paper, we examined the use of block Whittle-based estimation to detect changes within a
stochastic regression framework. We derived the consistency of the estimator and established the
convergence rate of its asymptotic normality. The regression parameter 𝛽𝑡 can take various forms such
as polynomial and Fourier expansions, or a mixture such as the sigmoid approximation.

Through extensive Monte Carlo simulations, we evaluated the estimator’s performance under various
settings involving both continuous and abrupt changes. The results demonstrated that the estimator
performs well even in the presence of multiple change points.

Furthermore, we applied the methodology to realized correlations using stocks from the DAX index
and found that the estimator could detect abrupt changes, resulting in a new cointegrating relationship.
This new cointegration vector led to more stable residuals compared to the constant case, and the asso-
ciated long memory value was reduced. This application highlights the importance and the advantage
of accounting for time variation in parameters, rather than assuming it to be constant.

In conclusion, the block Whittle-based estimation proves to be an effective method for analyzing
changes in a stochastic regression, and future research could explore bandwidth selection criteria for 𝑁
and 𝑆, as this remains an open problem.
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Appendix. Proofs

A.1 Technical Lemmas

Lemma 1. Consider 𝑑1, 𝑑2, and 𝑑3 ∈ [0, 1/2) and for any 𝑙 ∈ Z define the integral

𝐼(𝑙) =

∫∞

1

[
(𝑥 − 1)−2𝑑1 − 𝑥−2𝑑1

]
|𝑙 + 𝑥 |𝑑2+𝑑3−1𝑑𝑥.

Then 𝐼(𝑙) = 𝒪
(
|𝑙 |𝑑2+𝑑3−1

)
.

Proof. The proof is similar to the one of Lemma 3 in Palma and Olea (2010b). □

Lemma 2. Let 𝑓 (𝜆) and 𝜙(𝜆) be two functions defined over 𝜆 ∈ [−𝜋,𝜋] with Fourier coefficients

�̂� (𝑘) and 𝜙(𝑘), respectively, satisfying��� �̂� (𝑘)𝜙(𝑘)��� ≤ 𝐾 log 𝑘

𝑘2−2(𝑑1−𝑑2)
,

for some positive constant 𝐾 and |𝑘 |> 0.
Let 𝐶(𝑁) be given by

𝐶(𝑁) =
𝑁−1∑
𝑡=0

ℎ2
(
𝑡

𝑁

)
𝑁−1∑
𝑘=𝑁−𝑡

�̂� (𝑘)𝜙(𝑘),

with bounded data taper, |ℎ(𝑢)|≤ 𝐾, for all 𝑢 ∈ [0, 1]. Then there exists a positive constant 𝐾 such
that

|𝐶(𝑁)|≤ 𝐾 log𝑁

Proof. The proof of this lemma is similar to the proof of Lemma 7 presented in Palma and Olea (2010b).
Let’s consider a real number 𝛼 ∈ [0, 1] satisfying 1 − 𝛼 = 𝒪 (1/𝑁). Combined with the fact that

ℎ(𝑢) is bounded, we can write

|𝐶(𝑁)|≤ 𝐾 log𝑁

{
𝛼𝑁∑
𝑡=1

𝑁−1∑
𝑘=𝑁−𝑡

1

𝑘2−2(𝑑1−𝑑2)
+

𝑁−1∑
𝑡=𝛼𝑁+1

𝑁−1∑
𝑘=𝑁−𝑡

1

𝑘2−2(𝑑1−𝑑2)

}
. (27)

For 𝑡
𝑁 < 𝛼 < 1 we have

𝑁−1∑
𝑘=𝑁−𝑡

1

𝑘2−2(𝑑1−𝑑2)
=

1

𝑁1−2(𝑑1−𝑑2)

𝑁−1∑
𝑘=𝑁−𝑡

(
𝑁

𝑘

)2−2(𝑑1−𝑑2) 1

𝑁

≤ 𝐾

𝑁1−2(𝑑1−𝑑2)

∫1

1− 𝑡
𝑁

𝑑𝑥

𝑥2−2(𝑑1−𝑑2)

≤ 𝐾

𝑁1−2(𝑑1−𝑑2)

(
1

(1 − 𝑡/𝑁)1−2(𝑑1−𝑑2) − 1

)
.

Thus,

𝛼𝑁∑
𝑡=1

𝑁−1∑
𝑘=𝑁−𝑡

1

𝑘2−2(𝑑1−𝑑2)
≤ 𝐾

𝑁2(𝑑1−𝑑2)
1

𝑁

𝛼𝑁∑
𝑡=1

(
1

(1 − 𝑡/𝑁)1−2(𝑑1−𝑑2)
− 1

)
≤ 𝐾

𝑁2(𝑑1−𝑑2)

∫𝛼

0

(
1

(1 − 𝑥)1−2(𝑑1−𝑑2)
− 1

)
𝑑𝑥

≤ 𝐾

𝑁2(𝑑1−𝑑2)
1

(1 − 𝛼)−2(𝑑1−𝑑2)
= 𝐾(𝑁(1 − 𝛼))2(𝑑1−𝑑2)

= 𝒪 (1) , (28)
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because 1 − 𝛼 = 𝒪 (1/𝑁), and therefore 𝑁(1 − 𝛼) = 𝒪 (1).
On the other hand, for 𝛼𝑁 + 1 ≤ 𝑡 ≤ 𝑁 − 1 we can write using Bertrand’s series convergence

theorem that
𝑁−1∑
𝑘=𝑁−𝑡

1

𝑘2−2(𝑑1−𝑑2)
≤

∞∑
𝑘=1

1

𝑘2−2(𝑑1−𝑑2)
< ∞.

Therefore

𝑁−1∑
𝑡=𝛼𝑁+1

𝑁−1∑
𝑘=𝑁−𝑡

1

𝑘2−2(𝑑1−𝑑2)
≤ 𝐾

𝑁−1∑
𝑡=𝛼𝑁+1

≤ 𝐾𝑁(1 − 𝛼) = 𝒪 (1) . (29)

By combining (27), (28), and (29) we obtain the result. □

Lemma 3. Let’s define

𝐷(𝑁,𝑇) =
1

𝑁

𝑁−1∑
𝑡=0

𝑁−1∑
𝑘=𝑁−𝑡+1

𝜓(𝑘)

𝑘2−2(𝑑1−𝑑2)

(
𝑡 + 1 − 𝑁/2

𝑇

)
,

with a function |𝜓(𝑘)|≤ 𝐶 log𝑁 for all 0 ≤ 𝑘 ≤ 𝑁 , 𝑁 > 1, where 𝐶 is a positive constant. Then there
exists a constant 𝐾 > 0 such that

|𝐷(𝑁,𝑇)|≤ 𝐾
log𝑁

𝑇
.

Proof. The proof follows a similar structure to that of the previous Lemma 2, and the steps parallel
those of Lemma 8 in Palma and Olea (2010b). □

A.2 Technical proofs

In this section, we provided the proofs of the asymptotic results stated in Theorems 1 and 2. Before
proving these theorems, we present propositions and their proofs that aid in establishing the main
results. Additionally, auxiliary lemmas and their proofs are included in the Appendix. Throughout this
section, 𝐾 is a generic constant that can vary from line to line. We also consider the function function
𝜙 : [0, 1] : ×[−𝜋,𝜋] → R and introduce the corresponding functional operator:

𝐽 𝑓 (𝜙) =

∫1

0

∫𝜋

−𝜋
𝜙(𝑢,𝜆)𝑃(𝜆), (30)

where 𝑓 (𝜆) can represent successively 𝑓𝑌(𝜆), 𝑓𝑋(𝜆), 𝑓𝑋𝑌(𝜆), 𝑓𝑌𝑋(𝜆) and we define its sample version
as:

𝐽 𝐼𝑇(𝜙) =
1

𝑀

𝑀∑
𝑗=1

∫𝜋

−𝜋
𝜙(𝑢𝑗 ,𝜆)𝐼𝑁(𝑢𝑗 ,𝜆), (31)

where 𝐼𝑁(𝑢,𝜆) is either 𝐼𝑌𝑁(𝑢,𝜆), 𝐼
𝑋
𝑁
(𝑢,𝜆), 𝐼𝑋𝑌

𝑁
(𝑢,𝜆) or 𝐼𝑌𝑋

𝑁
(𝑢,𝜆).

We also denote the Fourier transforms as follows:

�̂� (𝑢, ·) =
∫𝜋

−𝜋
𝑓 (𝑢,𝜆)𝑒 𝑖𝜆·𝑑𝜆.

�̂� (𝑢, 𝑣, ·) =
∫𝜋

−𝜋
𝐴(𝑢,𝜆)𝐴(𝑣,𝜆)𝑒 𝑖𝜆·𝑑𝜆.

Moreover, we specify the matrix

𝑄(𝑢) =

(∫𝜋

−𝜋
𝜙(𝑢,𝜆)𝑒 𝑖𝜆(𝑠−𝑡)𝑑𝜆

)
𝑠,𝑡=1,...,𝑁

, (32)

and the block diagonal matrix 𝑄(𝜙) = 𝑑𝑖𝑎𝑔[𝑄(𝑢1), . . . , 𝑄(𝑢𝑀)].
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A.2.1 Propositions

We extend propositions 1 and 2 in Palma and Olea (2010a) to the case of the cross-spectral density
and the cross-periodogram. All the proofs are straightforward, closely following the steps outlined in
Palma and Olea (2010a).

Proposition 1 (Proposition 1, Palma and Olea (2010a)). Let 𝑓𝛿2(𝜆) be the spectral density of 𝜀𝑡
satisfying assumption A1 and assume that 𝜙(𝑢,𝜆) appearing in (30) is symmetric in 𝜆 and twice

differentiable with respect to 𝑢. Let �̂�𝛿2(𝑘) and 𝜙(𝑢, 𝑘) be their Fourier coefficients respectively. If
there is a positive constant 𝐾 such that

| �̂�𝛿2(𝑢, 𝑘)𝜙(𝑢, 𝑘)|≤ 𝐾

(
log 𝑘

𝑘2

)
,

for all 𝑢 ∈ [0, 1] and 𝑘 > 1, then, under assumptions A1 and A3 we have that

E[𝐽
𝐼𝜃
𝑁

𝑇
(𝜙)] = 𝐽 𝑓𝛿2 (𝜙) + 𝒪

(
log2 𝑁

𝑁

)
+ 𝒪

(
1

𝑀

)
, (33)

The following proposition is similar to the previous one.

Proposition 2. Let 𝑓 (𝑢,𝜆) and 𝐼𝑁(𝑢𝑗 ,𝜆) be successively
{
𝑓𝑌(𝑢,𝜆), 𝐼𝑌𝑁(𝑢,𝜆)

}
,{

𝑓𝑋(𝑢,𝜆), 𝐼𝑋𝑁(𝑢,𝜆)
}
,
{
𝑓𝑌𝑋(𝑢,𝜆), 𝐼𝑌𝑋𝑁 (𝑢,𝜆)

}
,
{
𝑓𝑋𝑌(𝑢,𝜆), 𝐼𝑋𝑌𝑁 (𝑢,𝜆)

}
and assume that 𝜙(𝑢,𝜆) ap-

pearing in (30) is symmetric in 𝜆 and twice differentiable with respect to 𝑢. Let �̂� (𝑢, 𝑘) and 𝜙(𝑢, 𝑘)
be their Fourier coefficients respectively. If there is a positive constant 𝐾 such that

| �̂� (𝑢, 𝑘)𝜙(𝑢, 𝑘)|≤ 𝐾

(
log 𝑘

𝑘2−2(𝛿1−𝛿2)

)
,

for all 𝑢 ∈ [0, 1] and 𝑘 > 1, then, under assumptions A1 and A3 we have that

E[𝐽 𝐼𝑁
𝑇
(𝜙)] = 𝐽 𝑓 (𝜙) + 𝒪

(
log𝑁

𝑁1−2(𝛿1−𝛿2)

)
+ 𝒪

(
1

𝑀

)
, (34)

for { 𝑓 , 𝐼𝑁 } described as above.

Proof. The proof of this proposition follows exactly the steps outlined in
proposition 1. The only things that have slightly changed are that instead of applying Lemma 7 and 8
of Palma and Olea (2010a), we now apply Lemma 2 and Lemma 3. □

Proposition 3. [Proposition 2, Palma and Olea (2010a)] Let 𝑓𝛿2(𝜆) be the spectral density of 𝜀𝑡
satisfying assumption A1. Let 𝜙1, 𝜙2 : [0, 1] → R be two functions such that 𝜙1(𝑢,𝜆) and 𝜙2(𝑢,𝜆)
are symmetric in 𝜆, and twice differentiable with respect to 𝑢 and their Fourier coefficients satisfy

𝜙1(𝑢, 𝑘), 𝜙2(𝑢, 𝑘) ≤ 𝐾 |𝑘 |−2𝛿2−1 for 𝑢 ∈ [0, 1] and |𝑘 |> 1.
If assumptions A2 and A3 hold, then

lim
𝑇→∞

𝑇1−2(𝛿1−𝛿2)Cov

[
𝐽
𝐼𝜃
𝑁

𝑇
(𝜙1), 𝐽

𝐼𝜃
𝑁

𝑇
(𝜙2)

]
= 4𝜋

∫1

0

∫𝜋

−𝜋
𝜙1(𝑢,𝜆)𝜙2(𝑢,𝜆) 𝑓

2
𝛿2
(𝑢,𝜆)𝑑𝜆𝑑𝑢.

Proposition 4. Let 𝑓1(𝑢,𝜆), 𝐼𝑁,1(𝑢𝑗 ,𝜆), 𝑓2(𝑢,𝜆) and 𝐼𝑁,2(𝑢𝑗 ,𝜆) be as described in Proposition 2. Let
𝜙1, 𝜙2 : [0, 1] → R be two functions such that 𝜙1(𝑢,𝜆) and 𝜙2(𝑢,𝜆) are symmetric in 𝜆, and twice

differentiable with respect to 𝑢 and their Fourier coefficients satisfy 𝜙1(𝑢, 𝑘), 𝜙2(𝑢, 𝑘) ≤ 𝐾 |𝑘 |−2𝛿1−1
for 𝑢 ∈ [0, 1] and |𝑘 |> 1.

If assumptions A2 and A3 hold, then

lim
𝑇→∞

𝑇1−2(𝛿1−𝛿2)Cov
[
𝐽
𝐼𝑁,1
𝑇

(𝜙1), 𝐽
𝐼𝑁,2
𝑇

(𝜙2)
]

= 4𝜋

∫1

0

∫𝜋

−𝜋
𝜙1(𝑢,𝜆)𝜙2(𝑢,𝜆)

× 𝑓1(𝑢,𝜆) 𝑓2(𝑢,𝜆)𝑑𝜆𝑑𝑢.
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Proof. The proof is similar to Proposition 2 in Palma and Olea (2010a). In this proof, we apply Lemma
1 instead of Lemma 3 from Palma and Olea (2010a). It’s worth noting that Lemma 1 is a more
generalized version. The expression of 𝐶𝑁 , as depicted in equation 26 of Palma and Olea (2010a),
takes on the following form in our case:

𝐶𝑁 = 𝒪
( [

log𝑀

𝑆𝑇2(𝛿1−𝛿2)
+
𝑇1−2(𝛿1−𝛿2)

𝑁2

]
𝑁4(𝛿1−𝛿2) + 𝑁𝑇𝛿1−1−2(𝛿1−𝛿2)

)
= 𝒪

(
log𝑀 𝑁4(𝛿1−𝛿2)

𝑆𝑇2(𝛿1−𝛿2)
+

(
𝑇

𝑁2

)1−2(𝛿1−𝛿2)
+ 𝑁𝑇𝛿1−1−2(𝛿1−𝛿2)

)
We conclude with assumption A3 that 𝐶𝑁 = 𝑜(1). □

Proposition 5. Let Cum𝑝(·) be the 𝑝𝑡ℎ order cumulant with 𝑝 ≥ 3. Then,

𝑇(1−2(𝛿1−𝛿2)) 𝑝2Cum𝑝[∇𝜃ℒ𝑇(𝜃, 𝛿2)] → 0,

as 𝑇 → ∞.

Proof. For notational simplicity, we will omit 𝜃 from ∇𝜃ℒ𝑇(𝜃, 𝛿2) so that it becomes ∇ℒ𝑇(𝜃, 𝛿2).
First, the expression for ∇ℒ𝑇(𝜃, 𝛿2) is provided as:

∇ℒ𝑇(𝜃, 𝛿2) =
1

4𝜋
1

𝑀

𝑀∑
𝑗=1

∫𝜋

−𝜋
∇𝐼𝜃𝑁(𝑢𝑗 ,𝜆) 𝑓

−1
𝛿2

(𝑢,𝜆)𝑑𝜆

=
1

4𝜋
1

𝑀

𝑀∑
𝑗=1

∫𝜋

−𝜋

(
−∇𝛽𝜃(𝑢𝑗)𝐼𝑌𝑋𝑁 (𝑢𝑗 ,𝜆) − ∇𝛽𝜃(𝑢𝑗)𝐼𝑋𝑌𝑁 (𝑢𝑗 ,𝜆) (35)

+ ∇𝛽2𝜃(𝑢𝑗)𝐼
𝑌
𝑁(𝑢𝑗 ,𝜆)

)
× 𝑓 −1𝛿2

(𝑢,𝜆)𝑑𝜆

=
1

2𝜋𝑀𝐻2,𝑁(0)

[
𝑌′𝑄(𝜙1)𝑋 + 𝑋′𝑄(𝜙1)𝑌 + 𝑌′𝑄(𝜙2)𝑌

]
, (36)

where 𝜙1(𝑢,𝜆) = −∇𝛽𝜃(𝑢) 𝑓 −1𝛿2
(𝑢,𝜆), 𝜙2(𝑢,𝜆) = ∇𝛽𝜃(𝑢)2 𝑓 −1𝛿2

(𝑢,𝜆)
𝜙1(𝑢,𝜆) = −∇𝛽𝜃(𝑢) 𝑓 −1𝛿2

(𝑢,𝜆)

𝜙2(𝑢,𝜆) = ∇𝛽𝜃(𝑢)2 𝑓 −1𝛿2
(𝑢,𝜆),

(37)

the block-diagonal matrix 𝑄(·) is defined in (32) and 𝑌, 𝑋 ∈ R𝑁𝑀 are Gaussian random vectors
defined by 𝑌 = (𝑌(𝑢1)

′, . . . , 𝑌(𝑢𝑀)′), 𝑋 = (𝑋(𝑢1)
′, . . . , 𝑋(𝑢𝑀)′), 𝑌(𝑢) = (𝑌1(𝑢), . . . , 𝑌𝑁(𝑢)),

𝑋(𝑢) = (𝑋1(𝑢), . . . , 𝑋𝑁(𝑢)), 𝑌𝑡(𝑢) = ℎ
(
𝑡
𝑛

)
𝑌[𝑢𝑇]−𝑁/2+𝑡+1 and 𝑋𝑡(𝑢) = ℎ

(
𝑡
𝑛

)
𝑋[𝑢𝑇]−𝑁/2+𝑡+1. For

simplicity, we write the matrix 𝑄(𝜙1) as 𝑄1, 𝑄(𝜙2) as 𝑄2 and (36) becomes as follow when we
consider by 𝑍 = (𝑌, 𝑋)′:

∇ℒ𝑇(𝜃, 𝛿2) =
1

2𝜋𝑀𝐻2,𝑁(0)
𝑍′𝑄𝑍, (38)

where

𝑄 =

(
𝑄2 𝑄1

𝑄1 0

)
.

Since 𝑍 is Gaussian we have that:

Cum𝑝(∇ℒ𝑇(𝜃, 𝛿2)) =
2𝑝−1(𝑝 − 1)!

(2𝜋𝑀𝐻2,𝑁(0))𝑝
𝑡𝑟(𝑅𝑄)𝑝 ≤ 𝐾

𝑡𝑟(𝑅𝑄)𝑝

𝑀𝑝𝑁𝑝
, (39)
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where 𝑅 = 𝑉𝑎𝑟(𝑍).

𝑅 = 𝑉𝑎𝑟(𝑍) =

(
𝑉𝑎𝑟(𝑌) Cov(𝑌, 𝑋)

Cov(𝑋,𝑌) 𝑉𝑎𝑟(𝑋)

)
=

(
𝑅𝑌 𝑅𝑌𝑋
𝑅𝑋𝑌 𝑅𝑋

)
(40)

Let denote by |𝐴|= [𝑡𝑟(𝐴′𝐴)]
1
2 be the Euclidian norm of the matrix 𝐴 and | |𝐴| |= sup| |𝑥 | |=1(𝐴𝑥)

′𝐴𝑥
be the spectral norm of 𝐴. Since |𝑡𝑟(𝑄𝐵)|≤ |𝑄 | |𝐵| and |𝑄𝐵|≤ ||𝑄 | | |𝐵| we get

|𝑡𝑟(𝑅𝑄)𝑝 |≤ ||𝑅𝑄 | |𝑝−2 |𝑅𝑄 |2 (41)

Additionally, for fixed 𝜆, decompose the functions 𝜙1(·,𝜆) and 𝜙2(·,𝜆) as 𝜙1(·,𝜆) = 𝜙1,+(·,𝜆) −
𝜙1,−(·,𝜆) and 𝜙2(·,𝜆) = 𝜙2,+(·,𝜆)−𝜙2,−(·,𝜆) where 𝜙1,+(·,𝜆), 𝜙1,−(·,𝜆), 𝜙2,+(·,𝜆), 𝜙2,−(·,𝜆) ≥ 0.
Thus, we can write 𝑄1 = 𝑄(𝜙1) = 𝑄(𝜙1,+) − 𝑄(𝜙1,−) = 𝑄1,+ − 𝑄1,− and 𝑄2 = 𝑄(𝜙2) =
𝑄(𝜙2,+) −𝑄(𝜙2,−) = 𝑄2,+ −𝑄2,−. So, 𝑄 = 𝑄+ −𝑄− where

𝑄+ =

(
𝑄2,+ 𝑄1,+

𝑄1,+ 0

)
, 𝑄− =

(
𝑄2,− 𝑄1,−
𝑄1,− 0

)
.

Now, using the fact that | |𝑅𝑄 | |≤ ||𝑅𝑄+ | |+| |𝑅𝑄− | | and (40) we can write | |𝑅𝑄+ | | as follows:

| |𝑅𝑄+ | | ≤ 𝐾 (| |𝑅𝑌𝑄2,+ | |+| |𝑅𝑌𝑄1,+ | |+| |𝑅𝑌𝑋𝑄1,+ | |
+| |𝑅𝑋𝑌𝑄2,+ | |+| |𝑅𝑋𝑌𝑄1,+ | |+| |𝑅𝑋𝑄1,+ | |) .

By Lemma 6 in Palma and Olea (2010a) we conclude that

| |𝑅𝑄+ | |≤ 𝐾(𝑀𝑁1−2𝛿2𝑇2𝛿1−1),

and by Proposition 2 in Palma and Olea (2010a) we have that |𝑅𝑄 |2≤ 𝐾𝑀2𝑁2

𝑇 . Thus, (41) becomes

|𝑡𝑟(𝑅𝑄)𝑝 | ≤ 𝐾(𝑀𝑁1−2𝛿2𝑇2𝛿1−1)𝑝−2
𝑀2𝑁2

𝑇

≤ 𝐾(𝑀𝑁1−2𝛿2𝑇2𝛿2−1𝑇2(𝛿1−𝛿2))𝑝−2
𝑀2𝑁2

𝑇
. (42)

Consequently by combining (39) and (42) we have,

|𝑇(1−2(𝛿1−𝛿2)) 𝑝2Cum𝑝[∇𝜃ℒ𝑇(𝜃, 𝛿2)]| ≤ 𝐾

𝑇2(𝛿2−𝛿1)

(
𝑁

𝑇

)(1−2𝛿2)(𝑝−2) (√𝑇𝑇(𝛿1−𝛿2)

𝑁

)𝑝−2
Since 𝑝 ≥ 3 and by assumption A3, 𝑁/𝑇 → 0 and (

√
𝑇𝑇𝛿1−𝛿2)/𝑁 → 0 as 𝑇, 𝑁 → ∞, we obtain the

result. □

A.2.2 Proof of theorems

Proof of Theorem 1. The proof for the consistency of �̂�2 is already established in Theorem 2.1 of Palma

and Olea (2010a). We can follow a similar approach to demonstrate the consistency of 𝜃. We need to
show that

sup
𝜃

|ℒ𝑇(𝜃) − ℒ(𝜃)|
𝑝

−−−→ 0,

as 𝑇 → ∞, where

ℒ(𝜃) =
1

4𝜋

∫1

0

∫𝜋

−𝜋

{
log 𝑓𝛿2(𝜆) +

𝑓𝜃(𝑢,𝜆)

𝑓𝛿2(𝜆)

}
𝑑𝜆𝑑𝑢, (43)

with 𝑓𝜃(𝑢,𝜆) given in (12). The proof follows in the same way and we therefore obtain the consistency

of 𝜃. □
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Proof of Theorem 2. We first start by applying the mean value theorem which tells us that there exists
a vector 𝜃, such that

∇ℒ𝑇(𝜃) − ∇ℒ𝑇(𝜃0) = [∇2ℒ𝑇(𝜃)](𝜃 − 𝜃0), (44)

with | |𝜃 − 𝜃0 | |≤ ||𝜃 − 𝜃0 | |. Therefore, if we prove:

a) ∇2ℒ𝑇(𝜃) − ∇2ℒ𝑇(𝜃0)
𝑝

−−−→ 0 in probability, as 𝑇 → ∞,

b) ∇2ℒ𝑇(𝜃0)
𝑝

−−−→ Λ(𝜃0) in probability, as 𝑇 → ∞,

c)
√
𝑇∇ℒ𝑇(𝜃0)

𝑑−−−→ 𝑁 [0,Λ(𝜃0)] in distribution, as 𝑇 → ∞,

then the result will follow.

1. The expression of ∇2ℒ𝑇(𝜃) is given by:

∇2ℒ𝑇(𝜃) =
1

4𝜋
1

𝑀

𝑀∑
𝑗=1

∫𝜋

−𝜋
∇2𝐼𝜃𝑁(𝑢𝑗 ,𝜆) 𝑓

−1
𝛿2

(𝑢,𝜆)𝑑𝜆

=
1

4𝜋
1

𝑀

𝑀∑
𝑗=1

∫𝜋

−𝜋

(
−∇2𝛽𝜃(𝑢𝑗)𝐼

𝑌𝑋
𝑁 (𝑢𝑗 ,𝜆) − ∇2𝛽𝜃(𝑢𝑗)𝐼

𝑋𝑌
𝑁 (𝑢𝑗 ,𝜆)

+ ∇2𝛽2𝜃(𝑢𝑗)𝐼
𝑌
𝑁(𝑢𝑗 ,𝜆)

)
× 𝑓 −1𝛿2

(𝑢,𝜆)𝑑𝜆. (45)

=
1

2𝜋𝑀𝐻2,𝑁(0)

[
𝑌′𝑄(𝜙3)𝑋 + 𝑋′𝑄(𝜙3)𝑌 + 𝑌′𝑄(𝜙4)𝑌

]
,

where 𝜙3(𝑢,𝜆) = −∇2𝛽𝜃(𝑢) 𝑓 −1𝛿2
(𝑢,𝜆), 𝜙4(𝑢,𝜆) = ∇2𝛽𝜃(𝑢)2 𝑓 −1𝛿2

(𝑢,𝜆).

To prove (a) we need to observe that ∇2ℒ𝑇(𝜃) is equicontinuous in probability which is obtained

analogously with Lemma 2.7 in Dahlhaus (2000). Hence, (a) follows from the fact that 𝜃
𝑝

−−−→ 𝜃0

and the equicontinuity of ∇2ℒ𝑇(𝜃).

2. On the other hand, (b) follows from the application of Proposition 2 and Proposition 4.

3. Finally, to prove (c) we use the method of cumulants.

(i) We obtain from (35) using Proposition 2 ,

E [∇ℒ𝑇(𝜃0)] = ∇ℒ(𝜃0) + 𝒪
(

log𝑁

𝑁1−2(𝛿1−𝛿2)

)
+ 𝒪

(
1

𝑀

)
,

where ℒ(𝜃) is defined in 43 and

∇ℒ(𝜃) =
1

4𝜋

∫1

0

∫𝜋

−𝜋
∇ 𝑓𝜃(𝑢,𝜆) 𝑓 −1𝛿2

(𝑢,𝜆)𝑑𝜆𝑑𝑢.

Since ∇ℒ(𝜃0) = 0 then by assumption A3, we get√
𝑇1−2(𝛿1−𝛿2)E [∇ℒ𝑇(𝜃0)] = 𝒪

(√
𝑇1−2(𝛿1−𝛿2) log𝑁

𝑁1−2(𝛿1−𝛿2)

)
+𝒪

(√
𝑇1−2(𝛿1−𝛿2)

𝑀

)
→ 0.
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(ii) Furthermore, we obtain through (35) and Proposition 4 (with 𝜙1 and 𝜙2 given in (37)) that
the second-order cumulant satisfies

lim
𝑇→∞

𝑇1−2(𝛿1−𝛿2)Cov[∇ℒ𝑇(𝜃0),∇ℒ𝑇(𝜃0)]

=
1

4𝜋

∫1

0

∫𝜋

−𝜋

[
4(∇𝛽𝜃0(𝑢,𝜆))2 𝑓 2𝑌𝑋(𝑢,𝜆) + (∇𝛽2𝜃0(𝑢,𝜆))

2 𝑓 2𝑌 (𝑢,𝜆)

−2∇𝛽𝜃0(𝑢,𝜆)∇𝛽2𝜃0(𝑢,𝜆) 𝑓𝑌𝑋(𝑢,𝜆) 𝑓𝑌(𝑢,𝜆)
]
( 𝑓 −1𝛿20

(𝑢,𝜆))2

=
1

4𝜋

∫1

0

∫𝜋

−𝜋

[
(∇ 𝑓𝜃0(𝑢,𝜆))2 + 2∇𝛽𝜃0(𝑢,𝜆)𝛽2𝜃0(𝑢,𝜆)𝑑𝜆𝑑𝑢

× 𝑓𝑌𝑋(𝑢,𝜆) 𝑓𝑌(𝑢,𝜆))
]
( 𝑓 −1𝛿20

(𝑢,𝜆))2𝑑𝜆𝑑𝑢 = 𝑉(𝜃0).

(iii) Finally, we obtain with Proposition 5 that the cumulants of order more than or equal to 3
are zero.

Therefore, the asymptotic normality of 𝜃 follows and the theorem is proved. □

A.3 Additional simulations

This appendix presents additional Monte Carlo simulation results in different tables, based on other
model specifications. For all the tables below we choose 𝑢0 = 64/𝑇 and 𝛽(𝑢) = 𝛽0 + (𝛽1 −
𝛽0)Sigmoid

(
(𝑢−𝑢0)
0.00005

)
.

1. 𝑋𝑡 ∼ 𝐴𝑅𝐹𝐼𝑀𝐴(0, 0.35, 1), and 𝜀𝑡 ∼ 𝐴𝑅𝐹𝐼𝑀𝐴(0, 0.1, 1)

𝑇 = 512, 𝑁 = 380, 𝑆 = 76

Parameters Estimates Estimated SD

𝛽0 𝛽1 𝛿2 �̂�0 �̂�1 �̂�2 �̂�(�̂�0) �̂�(�̂�1) �̂�(�̂�2)

1 2 0.1 0.989 2.001 0.09 0.168 0.075 0.094
2 4 0.1 2.02 3.977 0.12 0.161 0.054 0.099
0.5 -0.5 0.1 0.502 -0.519 0.12 0.162 0.061 0.09

𝑇 = 1024, 𝑁 = 380, 𝑆 = 76

Parameters Estimates Estimated SD

𝛽0 𝛽1 𝛿2 �̂�0 �̂�1 �̂�2 �̂�(�̂�0) �̂�(�̂�1) �̂�(�̂�2)

1 2 0.1 0.998 1.999 0.104 0.16 0.045 0.059
2 4 0.1 1.995 3.998 0.105 0.160 0.044 0.062
0.5 -0.5 0.1 0.509 -0.504 0.12 0.15 0.043 0.063

Table 6: Estimation for 𝑋𝑡 ∼ 𝐴𝑅𝐹𝐼𝑀𝐴(0, 0.35, 1), and 𝜀𝑡 ∼ 𝐴𝑅𝐹𝐼𝑀𝐴(0, 0.1, 1).

2. 𝑋𝑡 ∼ 𝐴𝑅𝐹𝐼𝑀𝐴(1, 0.35, 1), and 𝜀𝑡 ∼ 𝐴𝑅𝐹𝐼𝑀𝐴(0, 0.1, 1)
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𝑇 = 512, 𝑁 = 100, 𝑆 = 86

Parameters Estimates Estimated SD

𝛽0 𝛽1 𝛿2 �̂�0 �̂�1 �̂�2 �̂�(�̂�0) �̂�(�̂�1) �̂�(�̂�2)

1 2 0.1 1.045 2.000 0.105 0.151 0.069 0.096
2 4 0.1 2.07 4.001 0.11 0.155 0.072 0.098
0.5 -0.5 0.1 0.47 -0.5 0.1 0.157 0.072 0.1

𝑇 = 1024, 𝑁 = 100, 𝑆 = 86

Parameters Estimates Estimated SD

𝛽0 𝛽1 𝛿2 �̂�0 �̂�1 �̂�2 �̂�(�̂�0) �̂�(�̂�1) �̂�(�̂�2)

1 2 0.1 1.044 2.001 0.108 0.150 0.046 0.061
2 4 0.1 2.089 4.000 0.109 0.150 0.047 0.059
0.5 -0.5 0.1 0.47 -0.505 0.127 0.151 0.043 0.063

Table 7: Estimation for 𝑋𝑡 ∼ 𝐴𝑅𝐹𝐼𝑀𝐴(1, 0.35, 1), and 𝜀𝑡 ∼ 𝐴𝑅𝐹𝐼𝑀𝐴(0, 0.1, 1).
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